Question 12.11: A small, solid metallic sphere has an opaque, diffuse coatin...

A small, solid metallic sphere has an opaque, diffuse coating for which α_{λ} = 0.8 for λ ≤ 5 μm and α_{λ} = 0.1 for λ > 5 μm. The sphere, which is initially at a uniform temperature of 300 K, is inserted into a large furnace whose walls are at 1200 K. Determine the total, hemispherical absorptivity and emissivity of the coating for the initial condition and for the final, steady-state condition.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known: Small metallic sphere with spectrally selective absorptivity, initially at T_{s} = 300 K, is inserted into a large furnace at T_{f} = 1200 K.

Find:
1. Total, hemispherical absorptivity and emissivity of sphere coating for the initial condition.
2. Values of α and ε after sphere has been in furnace a long time.

Schematic:

Assumptions:
1. Coating is opaque and diffuse.
2. Since furnace surface is much larger than that of sphere, irradiation approximates emission from a blackbody at T_{f}.

Analysis:
1. From Equation 12.52 the total, hemispherical absorptivity is

α = \frac{\int_{0}^{∞}{α_{λ}(λ)G_{λ}(λ)}  dλ}{\int_{0}^{∞}{G_{λ}(λ)}  dλ}              (12.52)

or, with G_{λ} = E_{λ,b}(T_{f}) = E_{λ,b}(λ, 1200  K),

α = \frac{\int_{0}^{∞}{α_{λ}(λ)E_{λ,b}(λ, 1200  K)}  dλ}{E_{b}(1200  K)}

Hence

α = α_{λ,1}\frac{\int_{0}^{λ_{1}}{E_{λ,b}(λ, 1200  K)}  dλ}{E_{b}(1200  K)} + α_{λ,2}\frac{\int_{λ_{1}}^{∞}{E_{λ,b}(λ, 1200  K)}  dλ}{E_{b}(1200  K)}

or

α = α_{λ,1}F_{(0→λ_{1})} + α_{λ,2}[1  –  F_{(0→λ_{1})}]

From Table 12.2,

TABLE 12.2 Blackbody Radiation Functions
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} \pmb{F_{(0 → λ)}} λT (μm · K)
0.000000 0.375034 × 10^{-27} 0.000000 200
0.000000 0.490335 × 10^{-13} 0.000000 400
0.000014 0.104046 × 10^{-8} 0.000000 600
0.001372 0.991126 × 10^{-7} 0.000016 800
0.016406 0.118505 × 10^{-5} 0.000321 1,000
0.072534 0.523927 × 10^{-5} 0.002134 1,200
0.186082 0.134411 × 10^{-4} 0.007790 1,400
0.344904 0.249130 0.019718 1,600
0.519949 0.375568 0.039341 1,800
0.683123 0.493432 0.066728 2,000
0.816329 0.589649 × 10^{-4} 0.100888 2,200
0.912155 0.658866 0.140256 2,400
0.970891 0.701292 0.183120 2,600
0.997123 0.720239 0.227897 2,800
1.000000 0.722318 × 10^{-4} 0.250108 2,898
0.997143 0.720254 × 10^{-4} 0.273232 3,000
0.977373 0.705974 0.318102 3,200
0.943551 0.681544 0.361735 3,400
0.900429 0.650396 0.403607 3,600
0.851737 0.615225 × 10^{-4} 0.443382 3,800
0.800291 0.578064 0.480877 4,000
0.748139 0.540394 0.516014 4,200
0.696720 0.503253 0.548796 4,400
0.647004 0.467343 0.579280 4,600
0.599610 0.433109 0.607559 4,800
0.554898 0.400813 0.633747 5,000
0.513043 0.370580 × 10^{-4} 0.658970 5,200
0.474092 0.342445 0.680360 5,400
0.438002 0.316376 0.701046 5,600
0.404671 0.292301 0.720158 5,800
0.373965 0.270121 0.737818 6,000
0.345724 0.249723 × 10^{-4} 0.754140 6,200
0.319783 0.230985 0.769234 6,400
0.295973 0.213786 0.783199 6,600
0.274128 0.198008 0.796129 6,800
0.254090 0.183534 0.808109 7,000
0.235708 0.170256 × 10^{-4} 0.819217 7,200
0.218842 0.158073 0.829527 7,400
0.203360 0.146891 0.839102 7,600
0.189143 0.136621 0.848005 7,800
0.176079 0.127185 0.856288 8,000
0.147819 0.106772 × 10^{-4} 0.874608 8,500
0.124801 0.901463 × 10^{-5} 0.890029 9,000
0.105956 0.765338 0.903085 9,500
0.090442 0.653279 × 10^{-5} 0.914199 10,000
0.077600 0.560522 0.923710 10,500
0.066913 0.483321 0.931890 11,000
0.057970 0.418725 0.939959 11,500
0.050448 0.364394 × 10^{-5} 0.945098 12,000
0.038689 0.279457 0.955139 13,000
0.030131 0.217641 0.962898 14,000
0.023794 0.171866 × 10^{-5} 0.969981 15,000
0.019026 0.137429 0.973814 16,000
0.012574 0.908240 × 10^{-6} 0.980860 18,000
0.008629 0.623310 0.985602 20,000
0.003828 0.276474 0.992215 25,000
0.001945 0.140469 × 10^{-6} 0.995340 30,000
0.000656 0.473891 × 10^{-7} 0.997967 40,000
0.000279 0.201605 0.998953 50,000
0.000058 0.418597 × 10^{-8} 0.999713 75,000
0.000019 0.135752 0.999905 100,000

λ_{1}T_{f} = 5  μm × 1200  K = 6000  μm · K:\qquad F_{(0→λ_{1})} = 0.738

Hence

α = 0.8 × 0.738 + 0.1 (1  –  0.738) = 0.62

The total, hemispherical emissivity follows from Equation 12.43.

ε(T) = \frac{\int_{0}^{∞}{ε_{λ}(λ, T)E_{λ,b}(λ, T)} dλ}{E_{b}(T)}              (12.43)

ε(T_{s}) = \frac{\int_{0}^{∞}{ε_{λ}E_{λ,b}(λ, T_{s})}  dλ}{E_{b}(T_{s})}

Since the surface is diffuse, ε_{λ} = α_{λ} and it follows that

ε = α_{λ,1}\frac{\int_{0}^{λ_{1}}{E_{λ,b}(λ, 300  K)}  dλ}{E_{b}(300  K)} + α_{λ,2}\frac{\int_{λ_{1}}^{∞}{E_{λ,b}(λ, 300  K)}  dλ}{E_{b}(300  K)}

or,

ε = α_{λ,1}  F_{(0→λ_{1})} + α_{λ,2}[1  –  F_{(0→λ_{1})}]

From Table 12.2,

λ_{1}T_{s} = 5  μm × 300  K = 1500  μm · K:\qquad F_{(0→λ_{1})} = 0.014

Hence

ε = 0.8 × 0.014 + 0.1(1  –  0.014) = 0.11

2. Because the spectral characteristics of the coating and the furnace temperature remain fixed, there is no change in the value of α with increasing time. However, as T_{s} increases with time, the value of ε will change. After a sufficiently long time, T_{s} = T_{f}, and ε = α (ε = 0.62).

Comments:
1. The equilibrium condition that eventually exists (T_{s} = T_{f}) corresponds precisely to the condition for which Kirchhoff’s law was derived. Hence α must equal ε.
2. Approximating the sphere as a lumped capacitance and neglecting convection, an energy balance for a control volume about the sphere yields

\dot{E}_{in}  –  \dot{E}_{out} = \dot{E}_{st}

(αG)A_{s}  –  (εσT_{s}^{4})A_{s} = Mc_{p}\frac{dT_{s}}{dt}

The differential equation could be solved to determine T(t) for t > 0, and the variation in ε that occurs with increasing time would have to be included in the solution.

12.11

Related Answered Questions

Question: 12.2

Verified Answer:

Known: Spectral distribution of surface irradiatio...