Question 8.6: A spacecraft departs earth with a velocity perpendicular to ...

A spacecraft departs earth with a velocity perpendicular to the sun line on a flyby mission to Venus. Encounter occurs at a true anomaly in the approach trajectory of – 30°. Periapsis altitude is to be 300 km.

(a) For an approach from the dark side of the planet, show that the postflyby orbit is as illustrated in Fig. 8.20.

(b) For an approach from the sunlit side of the planet, show that the postflyby orbit is as illustrated in Fig. 8.21.

90307.8.20
90307.8.21
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The following data are found in Tables A.1 and A.2:

\mu_{ sun }=1.327\left(10^{11}\right)  km ^3 / s ^2

\mu_{ Venus }=324,900  km ^3 / s ^2

R_{\text {earth }}=149.6\left(10^6\right)  km

R_{\text {Venus}}=108.2\left(10^6\right)  km

r_{\text {Venus}} = 6052 km

Table A.1 Astronomical data for the sun, the planets, and the moon

Object Radius
(km)
Mass (kg) Sidereal
rotation
period
Inclination of
equator to
orbit plane
Semimajor
axis of orbit
(km)
Orbit
eccentricity
Inclination of
orbit to the
ecliptic plane
Orbit
sidereal
period
Sun 696000 1.989 \times 10^{30} 25.38d 7.25°
Mercury 2440 330.2 \times 10^{21} 58.56d 0.01° 57.91 \times 10^{6} 0.2056 7.00° 87.97d
Venus 6052 4.869 \times 10^{24} 243d^{a} 177.4° 108.2 \times 10^{6} 0.0067 3.39° 224.7d
Earth 6378 5.974 \times 10^{24} 23.9345h 23.45° 149.6 × 10^{6} 0.0167 0.00° 365.256d
(Moon) 1737 73.48 \times 10^{21} 27.32d 6.68° 384.4 \times 10^{3} 0.0549 5.145° 27.322d
Mars 3396 641.9 \times 10^{21} 24.62h 25.19° 227.9 \times 10^{6} 0.0935 1.850° 1.881y
Jupiter 71,490 1.899 \times 10^{27} 9.925h 3.13° 778.6 \times 10^{6} 0.0489 1.304° 11.86y
Saturn 60,270 568.5 \times 10^{24} 10.66h 26.73° 1.433 \times 10^{9} 0.0565 2.485° 29.46y
Uranus 25,560 86.83 \times 10^{24} 17.24h^{a} 97.77° 2.872 \times 10^{9} 0.0457 0.772° 84.01y
Neptune 24,764 102.4 \times 10^{24} 16.11h 28.32° 4.495 \times 10^{9} 0.0113 1.769° 164.8y
(Pluto) 1187 13.03 \times 10^{21} 6.387d^{a} 122.5° 5.906 \times 10^{9} 0.2488 17.16° 247.9y
aRetrograde.

Table A.2 Gravitational parameter (μ) and sphere of influence (SOI) radius for the sun, the planets, and the moon

Celestial body μ (km³/s²) SOI radius (km)
Sun 132,712,440,018
Mercury 22,032 112,000
Venus 324,859 616,000
Earth 398,600 925,000
Earth’s moon 4905 66,100
Mars 42,828 577,000
Jupiter 126,686,534 48,200,000
Saturn 37,931,187 54,800,000
Uranus 5,793,939 51,800,000
Neptune 6,836,529 86,600,000
Pluto 871 3,080,000

Preflyby ellipse (orbit 1)
Evaluating the orbit formula (Eq. 2.45) at aphelion of orbit 1 yields

R_{\text {earth }}=\frac{h_1^2}{\mu_{\text {sun }}} \frac{1}{1-e_1}

Thus,

h_1^2=\mu_{\text {sun }} R_{\text {earth }}\left(1-e_1\right)                               (a)

At intercept,

R_{\text {Venus }}=\frac{h_1^2}{\mu_{\text {sun }}} \frac{1}{1+e_1 \cos \left(\theta_1\right)}

Substituting Eq. (a) and \theta_1 = – 30° into this expression and solving the resulting expression for e_1leads to

e_1=\frac{R_{\text {earth }}-R_{\text {Venus }}}{R_{\text {earth }}+R_{\text {Venus }} \cos \left(\theta_1\right)}=\frac{149.6\left(10^6\right)-108.2\left(10^6\right)}{149.6\left(10^6\right)+108.2\left(10^6\right) \cos \left(-30^{\circ}\right)}=0.1702

With this result, and Eq. (a) yields

h_1=\sqrt{1.327\left(10^{11}\right) \cdot 149.6\left(10^6\right)(1-0.1702)}=4.059\left(10^9\right)  km ^2 / s

Now we can use Eqs. (2.31) and (2.49) to calculate the radial and transverse components of the spacecraft’s heliocentric velocity at the inbound crossing of Venus’ sphere of influence

V_{\perp_1}^{(v)}=\frac{h_1}{R_{\text {Venus }}}=\frac{4.059\left(10^9\right)}{108.2\left(10^6\right)}=37.51  km / s

V_{r_1}^{(v)}=\frac{\mu_{ sun }}{h_1} e_1 \sin \left(\theta_1\right)=\frac{1.327\left(10^{11}\right)}{4.059\left(10^9\right)} \cdot 0.1702 \cdot \sin \left(-30^{\circ}\right)=-2.782  km / s

The flight path angle, from Eq. (2.51), is

\gamma_1=\tan ^{-1} \frac{V_{r_1}^{(v)}}{V_{\perp_1}^{(v)}}=\tan ^{-1}\left(\frac{-2.782}{37.51}\right)=-4.241^{\circ}

The negative sign is consistent with the fact that the spacecraft is flying toward perihelion of the preflyby elliptical trajectory (orbit 1).
The speed of the space vehicle at the inbound crossing is

V_1^{(v)}=\sqrt{\left(V_{r_1}^{(v)}\right)^2+\left(V_{\perp_1}^{(v)}\right)^2}=\sqrt{(-2.782)^2+37.51^2}=37.62  km / s                            (b)

Flyby hyperbola
From Eqs. (8.75) and (8.77), we obtain

V _1^{(v)}=37.51 \hat{ u }_V+2.782 \hat{ u }_S  ( km / s )

\left.\left. V _1^{(v)}=V_1^{(v)}\right)_V \hat{ u }_V+V_1^{(v)}\right)_S \hat{ u }_S                         (8.75)

\left.\left.V_1^{(v)}\right)_V=V_{\perp_1}^{(v)} \quad V_1^{(v)}\right)_S=-V_{r_1}^{(v)}                              (8.77)

V =\sqrt{\frac{\mu_{\text {sun }}}{R_{\text {Venus }}}} \hat{ u }_V=\sqrt{\frac{1.327(10)^{11}}{108.2(10)^6}} \hat{ u }_V=35.02 \widehat{ u }_V  ( km / s )                                (c)

Hence

v _{\infty_1}= V _1^{(v)}- V =\left(37.51 \hat{ u }_V+2.782 \hat{ u }_S\right)-35.02 \hat{ u }_V=2.490 \hat{ u }_V+2.782 \hat{ u }_S  ( km / s )                                (d)

It follows that

v_{\infty}=\sqrt{ v _{\infty_1} \cdot v _{\infty_1}}=3.733  km / s

The periapsis radius is

r_p=r_{\text {Venus }}+300=6352  km

Eqs. (8.38) and (8.39) are used to compute the angular momentum and eccentricity of the planetocentric hyperbola.

h=6352 \sqrt{v_{\infty}{ }^2+\frac{2 \mu_{\text {Venus }}}{6352}}=6352 \sqrt{3.733^2+\frac{2 \cdot 324,900}{6352}}=68,480  km ^2 / s

e=1+\frac{r_p v_{\infty}{ }^2}{\mu_{\text {Venus }}}=1+\frac{6352 \cdot 3.733^2}{324,900}=1.272

The turn angle and true anomaly of the asymptote are

\delta=2 \sin ^{-1}\left(\frac{1}{e}\right)=2 \sin ^{-1}\left(\frac{1}{1.272}\right)=103.6^{\circ}

\theta_{\infty}=\cos ^{-1}\left(-\frac{1}{e}\right)=\cos ^{-1}\left(-\frac{1}{1.272}\right)=141.8^{\circ}

From Eqs. (2.50), (2.103), and (2.107), the aiming radius is

\Delta=r_p \sqrt{\frac{e+1}{e-1}}=6352 \sqrt{\frac{1.272+1}{1.272-1}}=18,340  km                              (e)

r_p=\frac{h^2}{\mu} \frac{1}{1+e}                              (2.50)

a=\frac{h^2}{\mu} \frac{1}{e^2-1}                           (2.103)

\Delta=a \sqrt{e^2-1}                                      (2.107)

Finally, from Eqs. (8.84) and (d) we obtain the angle between V_{\infty_1} and V,

\phi_1=\tan ^{-1} \frac{\left.v_{\infty_1}\right)_S}{\left.v_{\infty_1}\right)_V}=\tan ^{-1} \frac{2.782}{2.490}=48.17^{\circ}                                   (f)

There are two flyby approaches, as shown in Fig. 8.22. In the dark-side approach, the turn angle is counterclockwise (+102.9°), whereas for the sunlit-side, approach it is clockwise (- 102.9°).

(a) Dark-side approach
According to Eq. (8.85), the angle between v_{\infty} and V _{\text {Venus }} at the outbound crossing is

\phi_2=\phi_1+\delta=48.17^{\circ}+103.6^{\circ}=151.8^{\circ}

Hence, by Eq. (8.86),

v _{\infty_2}=3.733\left(\cos 151.8^{\circ} \hat{ u }_V+\sin 151.8^{\circ} \hat{ u }_S\right)=-3.289 \hat{ u }_V+1.766 \hat{ u }_S  ( km / s )

v _{\infty_2}=v_{\infty} \cos \phi_2 \hat{ u }_V+v_{\infty} \sin \phi_2 \hat{ u }_S                            (8.86)

Using this and Eq. (c), we compute the spacecraft’s heliocentric velocity at the outbound crossing.

V _2^{(v)}= V + v _{\infty_2}=31.73 \hat{ u }_V+1.766 \hat{ u }_S  ( km / s )

It follows from Eq. (8.89) that

V_{\perp_2}^{(v)}=31.73 km / s \quad V_{r_2}^{(v)}=-1.766  km / s                                 (g)

\left.\left.V_{\perp_2}^{(v)}=V_2^{(v)}\right)_V \quad V_{r_2}^{(v)}=-V_2^{(v)}\right)_S

The speed of the spacecraft at the outbound crossing is

V_2^{(v)}=\sqrt{\left(V_{r_2}^{(v)}\right)^2+\left(V_{\perp_2}^{(v)}\right)^2}=\sqrt{(-1.766)^2+31.73^2}=31.78  km / s

This is 5.83 km/s less than the inbound speed.

Postflyby ellipse (orbit 2) for the dark-side approach
For the heliocentric postflyby trajectory, labeled orbit 2 in Fig. 8.20, the angular momentum is found using Eq. (8.90)

h_2=R_{\text {venus }} V_{\perp_2}^{(v)}=108.2(10)^6 \cdot 31.73=3.434\left(10^9\right)  \left( km ^2 / s \right)                        (h)

From Eq. (8.91),

e \cos \theta_2=\frac{h_2^2}{\mu_{\text {sun }} R_{ V \text { enus }}}-1=\frac{\left[3.434\left(10^9\right)\right]^2}{1.327\left(10^{11}\right) \cdot 108.2\left(10^6\right)}-1=-0.1790                    (i)

and from Eq. (8.92)

e \sin \theta_2=\frac{V_{r_2}^{(v)} h_2}{\mu_{\text {sun }}}=\frac{-1.766 \cdot 3.434(10)^9}{1.327\left(10^{11}\right)}=-0.04569                              (j)

Thus

\tan \theta_2=\frac{e \sin \theta_2}{e \cos \theta_2}=\frac{-0.04569}{-0.1790}=0.2553                            (k)

which means

\theta_2 = 14.32°   or    194.32°                      (l)

But \theta_2 must lie in the third quadrant since, according to Eqs. (i) and (j), both the sine and cosine are negative.

\theta_2 = 194.32°                                     (m)

With this value of \theta_2, we can use either Eq. (i) or Eq. (j) to calculate the eccentricity,

e_2 = 0.1847                              (n)

Perihelion of the departure orbit lies 194.32° clockwise from the encounter point (so that aphelion is 14.32° therefrom), as illustrated in Fig. 8.20. The perihelion radius is given by Eq. (2.50),

R_{\text {perihelion }}=\frac{h_2^2}{\mu_{\text {sun }}} \frac{1}{1+e_2}=\frac{\left[3.434\left(10^9\right)\right]^2}{1.327\left(10^{11}\right)} \frac{1}{1+0.1847}=74.98\left(10^6\right)  km

which is well within the orbit of Venus.
(b) Sunlit-side approach
In this case, the angle between v_{\infty} and V _{\text {Venus }} at the outbound crossing is

\phi_2=\phi_1-\delta=48.17^{\circ}-103.6^{\circ}=-55.44^{\circ}

Therefore,

v _{\infty_2}=3.733\left[\cos \left(-55.44^{\circ}\right) \hat{ u }_V+\sin \left(-55.44^{\circ}\right) \hat{ u }_S\right]=2.118 \hat{ u }_V-3.074 \hat{ u }_S  ( km / s )

The spacecraft’s heliocentric velocity at the outbound crossing is

V _2^{(v)}= V _{\text {Venus }}+ v _{\infty_2}=37.14 \hat{ u }_V-3.074 \hat{ u }_S  ( km / s )

which means

V_{\perp_2}^{(v)}=37.14 km / s \quad V_{r_2}^{(v)}=3.074  km / s

The speed of the spacecraft at the outbound crossing is

V_2^{(v)}=\sqrt{\left(V_{r_2}^{(v)}\right)^2+\left(V_{\perp_2}^{(v)}\right)^2}=\sqrt{3.050^2+37.14^2}=37.27  km / s

This speed is just 0.348 km/s less than the inbound crossing speed. The relatively small speed change is due to the fact that the apse line of this hyperbola is nearly perpendicular to Venus’ orbital track, as shown in Fig. 8.23. Nevertheless, the periapses of both hyperbolas are on the leading side of the planet.

Postflyby ellipse (orbit 2) for the sunlit-side approach
To determine the heliocentric postflyby trajectory, labeled orbit 2 in Fig. 8.21, we repeat Steps (h) through (n) above.

h_2=R_{\text {Venus }} V_{\perp_2}^{(v)}=108.2\left(10^6\right) \cdot 37.14=4.019\left(10^9\right)  \left( km ^2 / s \right)

e \cos \theta_2=\frac{h_2^2}{\mu_{ sun } R_{ Venus }}-1=\frac{\left[4.019\left(10^9\right)\right]^2}{1.327\left(10^{11}\right) \cdot 108.2\left(10^6\right)}-1=0.1246                    (o)

e \sin \theta_2=\frac{V_{r_2}^{(v)} h_2}{\mu_{\operatorname{sun}}}=\frac{3.074 \cdot 4.019\left(10^9\right)}{1.327\left(10^{11}\right)}=0.09309                      (p)

\tan \theta_2=\frac{e \sin \theta_2}{e \cos \theta_2}=\frac{0.09309}{0.1246}=0.7469 \Rightarrow \theta_2=36.76^{\circ} \text { or } 216.76^{\circ}

\theta_2 must lie in the first quadrant since both the sine and cosine are positive. Hence,

\theta_2 = 36.76°                             (q)

With this value of \theta_2, we can use either Eq. (o) or (p) to calculate the eccentricity,

e_2 = 0.1556

Perihelion of the departure orbit lies 36.76° clockwise from the encounter point as illustrated in Fig. 8.21. The perihelion radius is

R_{\text {perihelion }}=\frac{h_2^2}{\mu_{\text {sum }}} \frac{1}{1+e_2}=\frac{\left[4.019\left(10^9\right)\right]^2}{1.327\left(10^{11}\right)} \frac{1}{1+0.1556}=105.3\left(10^6\right)  km

which is just within the orbit of Venus. Aphelion lies between the orbits of earth and Venus.

90307.8.23

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eq. (5.48), the Julian day nu...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have R_{\text {e...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...