Question 8.8: A spacecraft departs earth’s sphere of influence on November...

A spacecraft departs earth’s sphere of influence on November 7, 1996 (0 h UT), on a prograde coasting flight to Mars, arriving at Mars’ sphere of influence on September, 12, 1997 (0 h UT). Use Algorithm 8.2 to determine the trajectory and then compute the hyperbolic excess velocities at departure and arrival.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Step 1:
Algorithm 8.1 yields the state vectors for earth and Mars

R _{\text {earth }}=1.0499\left(10^8\right) \hat{ I }+1.0465\left(10^8\right) \hat{ J }+716.93 \hat{ K }  ( km ) \quad\left(R_{\text {earth }}=1.4824\left(10^8\right)  km \right)

V _{\text {earth }}=-21.515 \hat{ I }+20.958 \hat{ J }+0.00014376 \hat{ K }  ( km / s ) \quad\left(V_{\text {earth }}=30.055  km / s \right)

R _{\text {Mars }}=-2.0858\left(10^7\right) \hat{ I }-2.1842\left(10^8\right) \hat{ J }+4.06244\left(10^6\right) \hat{ K }  ( km ) \quad\left(R_{\text {Mars }}=2.1945\left(10^8\right)  km \right)

V _{\text {Mars }}=25.037 \hat{ I }+0.22311 \hat{ J }-0.62018 \hat{ K }  ( km / s ) \quad\left(V_{\text {Mars }}=25.046  km / s \right)

Step 2:
The position vector R_1 of the spacecraft at crossing the earth’s sphere of influence is just that of the earth,

R _1= R _{\text {earth }}=1.0499\left(10^8\right) \hat{ I }+1.0465\left(10^8\right) \hat{ J }+716.93 \hat{ K }  ( km )

On arrival at Mars’ sphere of influence, the spacecraft’s position vector is

R _2= R _{ mars }=-2.0858\left(10^7\right) \hat{ I }-2.1842\left(10^8\right) \hat{ J }-4.06244\left(10^6\right) \hat{ K }  ( km )

According to Eqs. (5.47) and (5.48)

J D_{\text {Departure }}=2,450,394.5

J D_{\text {Arrival }}=2,450,703.5

J D=J_0+\frac{U T}{24}                  (5.47)

J_0=367 y-\operatorname{INT}\left\{\frac{7\left[y+\operatorname{INT}\left(\frac{m+9}{12}\right)\right]}{4}\right\}+\operatorname{INT}\left(\frac{275 m}{9}\right)+d+1,721,013.5                            (5.48)

Hence, the time of flight is

t_{12} = 2,450,703.5 – 2,450,394.5 = 309 days

Entering R_1, R_2, and t_{12} into Algorithm 5.2 yields

V _D^{(v)}=-24.429 \hat{ I }+21.782 \hat{ J }+0.94810 \hat{ K }  ( km / s ) \quad\left(V_D^{(v)}=32.743  km / s \right)

V _A^{(v)}=22.157 \hat{ I }+0.19959 \hat{ J }+0.45793 \hat{ K }  ( km / s ) \quad\left(V_A^{(v)}=22.162  km / s \right)

Using the state vector \left( R _1, V_D^{(v)}\right), we employ Algorithm 4.2 to find the orbital elements of the heliocentric transfer trajectory.

h = 4.8456 \left(10^6\right) km²/s
e = 0.20581
Ω = 44.898°
i = 1.6622°
ω = 19.973°
\theta_1 = 340.04°
a = 1.8475 \left(10^8\right) km

Step 3:
At departure, the hyperbolic excess velocity is

\left. v _{\infty}\right)_{\text {Departure }}= V _D^{(v)}- V _{\text {earth }}=-2.9138 \hat{ I }+0.79525 \hat{ J }+0.94796 \hat{ K }  ( km / s )

Therefore, the hyperbolic excess speed is

\left.\left.v_{\infty}\right)_{\text {Departure }}=\| v _{\infty}\right)_{\text {Departure }} \|=3.1656  km / s                     (a)

Likewise, at arrival

\left. v _{\infty}\right)_{\text {Arrival }}= V _A^{(v)}- V _{\text {Mars }}=-2.58805 \hat{ I }+0.023514 \hat{ J }+0.16254 \hat{ K }  ( km / s )

so that

\left.\left. v _{\infty}\right)_{\text {Arrival }}=\| v _{\infty}\right)_{\text {Arrival }} \|=2.8852  km / s                           (b)

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eq. (5.48), the Julian day nu...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have R_{\text {e...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...