Question 10.10: A spacecraft in torque-free motion has three identical momen...

A spacecraft in torque-free motion has three identical momentum wheels with their spin axes aligned with the vehicle’s principal body axes. The spin axes of momentum wheels 1, 2 and 3 are aligned with the x, y and z axes, respectively. The inertia tensors of the rotationally symmetric momentum wheels about their centers of mass are, therefore,

\begin{matrix}[I_{G_{1}}^{(1)}]= \left[\begin{matrix} I & 0 & 0 \\0 &J &0 \\0 & 0 & J \end{matrix} \right] &[I_{G_{2}}^{(2)}]= \left[\begin{matrix} J & 0 & 0 \\0 &I &0 \\0 & 0 & J \end{matrix} \right] & [I_{G_{3}}^{(3)}]= \left[\begin{matrix} J & 0 & 0 \\0 &J &0 \\0 & 0 & I\end{matrix} \right]\end{matrix}            (a)

The spacecraft moment of inertia tensor about the vehicle center of mass is
[I_{G}^{(v)}]= \left[\begin{matrix}A & 0 & 0 \\0 &B &0 \\0 & 0 & C \end{matrix} \right]                                                                                            (b)

Calculate the spin accelerations of the momentum wheels in the presence of external torque.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The absolute angular velocity ω of the spacecraft and the angular velocities \omega ^{(1)}_{rel},  \omega ^{(2)}_{rel}, \omega ^{(3)}_{rel} of the three flywheels relative to the spacecraft are

\begin{matrix} \left\{\omega \right\}=\left\{\begin{matrix} \omega_{x} \\\omega_{y}\\\omega _{z}\end{matrix} \right\} &\left\{\omega ^{(1)}\right\}_{rel}=\left\{\begin{matrix} \omega ^{(1)} \\0\\0 \end{matrix} \right\} &\left\{\omega ^{(2)}\right\}_{rel}=\left\{\begin{matrix} 0 \\\omega ^{(2)}\\0 \end{matrix} \right\}&\left\{\omega ^{(3)}\right\}_{rel}=\left\{\begin{matrix} 0 \\0\\\omega ^{(3)}\end{matrix} \right\} \end{matrix}                      (c)

Therefore, the angular momentum of the spacecraft and momentum wheels is
\left\{H_{G}\right\}=[I_{G}^{(v)}]\left\{\omega \right\}+[I_{G_{1}}^{(1)}](\left\{\omega \right\}+\left\{\omega^{(1)} \right\}_{rel})+[I_{G_{2}}^{(2)}](\left\{\omega \right\}+\left\{\omega^{(2)} \right\}_{rel})
+[I_{G_{3}}^{(3)}](\left\{\omega \right\}+\left\{\omega^{(3)} \right\}_{rel})                                                                                                                                   (d)
Substituting Equations (a), (b) and (c) into this expression yields
\left\{H_{G}\right\}=\left[\begin{matrix}I & 0 & 0 \\0 &I &0 \\0 & 0 & I \end{matrix} \right]\left\{\begin{matrix} \omega ^{(1)} \\ \omega ^{(2)} \\ \omega ^{(3)} \end{matrix} \right\} +\left[\begin{matrix}A+I+2J& 0 & 0 \\0 &B+I+2J &0 \\0 & 0 &C+ I+2J \end{matrix} \right] \left\{\begin{matrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{matrix} \right\}                        (e)

In this case, Euler’s equations are
\left\{\dot{H}_{G}\right\}_{rel}+\left\{\omega \right\}\times \left\{H_{G}\right\}=\left\{M_{G}\right\}                                                                                                                     (f)

Substituting (e), we get
\left[\begin{matrix}I & 0 & 0 \\0 &I &0 \\0 & 0 & I \end{matrix} \right]\left\{\begin{matrix} \dot{\omega}^{(1)} \\ \dot{\omega}^{(2)} \\ \dot{\omega}^{(3)} \end{matrix} \right\} +\left[\begin{matrix}A+I+2J & 0 & 0 \\0 &B+I+2J &0 \\0 & 0 &C+ I+2J \end{matrix} \right] \left\{\begin{matrix} \dot{\omega}_{x} \\ \dot{\omega}_{y} \\ \dot{\omega}_{z} \end{matrix} \right\}+ \left\{\begin{matrix} \omega_{x} \\ \omega_{y} \\ \omega_{z} \end{matrix} \right\}

\times\left( \left[\begin{matrix}I & 0 & 0 \\0 &I &0 \\0 & 0 & I \end{matrix} \right]\left\{\begin{matrix} {\omega}^{(1)} \\ {\omega}^{(2)} \\ {\omega}^{(3)} \end{matrix} \right\} +\left[\begin{matrix}A+I+2J & 0 & 0 \\0 &B+I+2J &0 \\0 & 0 &C+ I+2J \end{matrix} \right] \left\{\begin{matrix} {\omega}_{x} \\ {\omega}_{y} \\ {\omega}_{z} \end{matrix} \right\}\right)

 

=\left\{\begin{matrix}M_{G_{x}} \\M_{G_{y}} \\M_{G_{z}} \end{matrix} \right\}                                                                                                             (g)

Expanding and collecting terms yields the time rates of change of the flywheel spins (relative to the spacecraft) in terms of those of the spacecraft’s absolute angular velocity components,
\dot{\omega}^{(1)}=\frac{M_{G_{x}}}{I}+\frac{B-C}{I}\omega_{y}\omega_{z}-(1+\frac{A}{I}+2\frac{J}{I})\dot{\omega}_{x}+\omega ^{(2)}\omega_{z}-\omega^{(3)}\omega_{y}
\dot{\omega}^{(2)}=\frac{M_{G_{y}}}{I}+\frac{C-A}{I}\omega_{x}\omega_{z}-(1+\frac{B}{I}+2\frac{J}{I})\dot{\omega}_{y}+\omega ^{(3)}\omega_{x}-\omega^{(1)}\omega_{z}               (h)
\dot{\omega}^{(3)}=\frac{M_{G_{z}}}{I}+\frac{A-B}{I}\omega_{x}\omega_{y}-(1+\frac{C}{I}+2\frac{J}{I})\dot{\omega}_{z}+\omega ^{(1)}\omega_{y}-\omega^{(2)}\omega_{x}

Related Answered Questions