Question 8.4: A spacecraft is launched on a mission to Mars starting from ...

A spacecraft is launched on a mission to Mars starting from a 300-km circular parking orbit. Calculate (a) the delta-v required, (b) the location of perigee of the departure hyperbola, and (c) the amount of propellant required as a percentage of the spacecraft mass before the delta-v burn, assuming a specific impulse of 300 s.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.
  1. From Tables A.1 and A.2, we obtain the gravitational parameters for the sun and the earth,

μsun=1.327(1011) km3/s2\mu_{ sun }=1.327\left(10^{11}\right)  km ^3 / s ^2

μearth =398,600 km3/s2\mu_{\text {earth }}=398,600  km ^3 / s ^2

Table A.1 Astronomical data for the sun, the planets, and the moon

Object Radius
(km)
Mass (kg) Sidereal
rotation
period
Inclination of
equator to
orbit plane
Semimajor
axis of orbit
(km)
Orbit
eccentricity
Inclination of
orbit to the
ecliptic plane
Orbit
sidereal
period
Sun 696000 1.989×10301.989 \times 10^{30} 25.38d 7.25°
Mercury 2440 330.2×1021330.2 \times 10^{21} 58.56d 0.01° 57.91×10657.91 \times 10^{6} 0.2056 7.00° 87.97d
Venus 6052 4.869×10244.869 \times 10^{24} 243da 177.4° 108.2×106108.2 \times 10^{6} 0.0067 3.39° 224.7d
Earth 6378 5.974×10245.974 \times 10^{24} 23.9345h 23.45° 149.6×106149.6 \times 10^{6} 0.0167 0.00° 365.256d
(Moon) 1737 73.48×102173.48 \times 10^{21} 27.32d 6.68° 384.4×103384.4 \times 10^{3} 0.0549 5.145° 27.322d
Mars 3396 641.9×1021641.9 \times 10^{21} 24.62h 25.19° 227.9×106227.9 \times 10^{6} 0.0935 1.850° 1.881y
Jupiter 71,490 1.899×10271.899 \times 10^{27} 9.925h 3.13° 778.6×106778.6 \times 10^{6} 0.0489 1.304° 11.86y
Saturn 60,270 568.5×1024568.5 \times 10^{24} 10.66h 26.73° 1.433×1091.433 \times 10^{9} 0.0565 2.485° 29.46y
Uranus 25,560 86.83×102486.83 \times 10^{24} 17.24ha 97.77° 2.872×1092.872 \times 10^{9} 0.0457 0.772° 84.01y
Neptune 24,764 102.4×1024102.4 \times 10^{24} 16.11h 28.32° 4.495×1094.495 \times 10^{9} 0.0113 1.769° 164.8y
(Pluto) 1187 13.03×102113.03 \times 10^{21} 6.387da 122.5° 5.906×1095.906 \times 10^{9} 0.2488 17.16° 247.9y
a^aRetrograde.

Table A.2 Gravitational parameter (μ) and sphere of influence (SOI) radius for the sun, the planets, and the moon

Celestial body μ (km³/s²) SOI radius (km)
Sun 132,712,440,018
Mercury 22,032 112,000
Venus 324,859 616,000
Earth 398,600 925,000
Earth’s moon 4905 66,100
Mars 42,828 577,000
Jupiter 126,686,534 48,200,000
Saturn 37,931,187 54,800,000
Uranus 5,793,939 51,800,000
Neptune 6,836,529 86,600,000
Pluto 871 3,080,000

and the orbital radii of the earth and Mars,

Rearth =149.6(106) kmR_{\text {earth }}=149.6\left(10^6\right)  km

RMars =227.9(106) kmR_{\text {Mars }}=227.9\left(10^6\right)  km

(a) According to Eq. (8.35), the hyperbolic excess speed is

v=μsun Rearth (2RMarsRearth +RMars1)=1.327(1011)149.6(106)(2227.9(106)149.6(106)+227.9(106)1)v_{\infty}=\sqrt{\frac{\mu_{\text {sun }}}{R_{\text {earth }}}}\left(\sqrt{\frac{2 R_{ Mars }}{R_{\text {earth }}+R_{ Mars }}}-1\right)=\sqrt{\frac{1.327\left(10^{11}\right)}{149.6\left(10^6\right)}}\left(\sqrt{\frac{2 \cdot 227.9\left(10^6\right)}{149.6\left(10^6\right)+227.9\left(10^6\right)}-1}\right)

from which

v=2.943 km/sv_{\infty}=2.943  km / s

The speed of the spacecraft in its 300-km circular parking orbit is given by Eq. (8.41),

vc=μearth rearth +300=398,6006678=7.726 km/sv_c=\sqrt{\frac{\mu_{\text {earth }}}{r_{\text {earth }}+300}}=\sqrt{\frac{398,600}{6678}}=7.726  km / s

Finally, we use Eq. (8.42) to calculate the delta-v required to step up to the departure hyperbola

Δv=vc(2+(vvc)21)=7.726(2+(2.9437.726)21)\Delta v=v_c\left(\sqrt{2+\left(\frac{v_{\infty}}{v_c}\right)^2}-1\right)=7.726\left(\sqrt{2+\left(\frac{2.943}{7.726}\right)^2}-1\right)

Δv = 3.590 km/s

(b) Perigee of the departure hyperbola, relative to the earth’s orbital velocity vector, is found using Eq. (8.43),

β=cos1(11+rpv2μearth )=cos1(11+66782.9432368,600)\beta=\cos ^{-1}\left(\frac{1}{1+\frac{r_p v_{\infty}{ }^2}{\mu_{\text {earth }}}}\right)=\cos ^{-1}\left(\frac{1}{1+\frac{6678 \cdot 2.943^2}{368,600}}\right)

β = 29.16°

Fig. 8.12 shows that the perigee can be located on either the sunlit or the dark side of the earth. It is likely that the parking orbit would be a prograde orbit (west to east), which would place the burnout point on the dark side.
(c) From Eq. (6.1), we have

Δmm=1exp(Δvlsp g0)\frac{\Delta m}{m}=1-\exp \left(-\frac{\Delta v}{l_{\text {sp }} g_0}\right)

Substituting Δv=3.590 km/s,Isq=300 s , and g0=9.81(103) km/s2\Delta v=3.590  km / s , I_{ sq }=300  s  \text {, and } g_0=9.81\left(10^{-3}\right)  km / s ^2, this yields

Δmm=0.705\frac{\Delta m}{m}=0.705

That is, prior to the delta-v maneuver over, 70% of the spacecraft mass must be propellant.

90307.8.12

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eq. (5.48), the Julian day nu...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have R_{\text {e...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...