Question 12.3: A square column foundation to be constructed on a sandy soil...

A square column foundation to be constructed on a sandy soil has to carry a gross allowable inclined load of 59.6 kip. The depth of the foundation will be 2.3 ft. The load will be inclined at an angle of 20° to the vertical (Figure 12.5).

Assume that the unit weight of the soil is 114.5 lb/ft³. Determine the width of the foundation, B. Use a factor of safety of 3

12.5
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

With c′ = 0, the ultimate bearing capacity [Eq. (12.7)] becomes

q_u = q N_qF_{qs}F_{qd} F_{qi}  +\frac{1}{2} \gamma BN_\gamma F_{\gamma s}F_{\gamma d}F_{\gamma i}

q = (2.3)(114.5) = 263.35 lb/ft²

γ = 114.5 lb/ft³

From Table 12.1,

φ′ N_c N_q N_\gamma φ′ N_c N_q N_\gamma
0 5.14 1.00 0.00 23 18.05 8.66 8.20
1 5.38 1.09 0.07 24 19.32 9.60 9.44
2 5.63 1.20 0.15 25 20.72 10.66 10.88
3 5.90 1.31 0.24 26 22.25 11.85 12.54
4 6.19 1.43 0.34 27 23.94 13.20 14.47
5 6.49 1.57 0.45 28 25.80 14.72 16.72
6 6.81 1.72 0.57 29 27.86 16.44 19.34
7 7.16 1.88 0.71 30 30.14 18.40 22.40
8 7.53 2.06 0.86 31 32.67 20.63 25.99
9 7.92 2.25 1.03 32 35.49 23.18 30.22
10 8.35 2.47 1.22 33 38.64 26.09 35.19
11 8.80 2.71 1.44 34 42.16 29.44 41.06
12 9.28 2.97 1.69 35 46.12 33.30 48.03
13 9.81 3.26 1.97 36 50.59 37.75 56.31
14 10.37 3.59 2.29 37 55.63 42.92 66.19
15 10.98 3.94 2.65 38 61.35 48.93 78.03
16 11.63 4.34 3.06 39 67.87 55.96 92.25
17 12.34 4.77 3.53 40 75.31 64.20 109.41
18 13.10 5.26 4.07 41 83.86 73.90 130.22
19 13.93 5.80 4.68 42 93.71 85.38 155.55
20 14.83 6.40 5.39 43 105.11 99.02 186.54
21 15.82 7.07 6.20 44 118.37 115.31 224.64
22 16.88 7.82 7.13 45 133.88 134.88 271.76

for φ′ = 30°, we find
N_q = 18.4
N_\gamma = 22.4
From Table 12.2,

Factor Relationship Source
Shape* F_{cs} = 1 +\frac{B}{L}\frac{ N_q}{ N_c} De Beer (1970)
F_{qs} = 1 +\frac{B}{L}\tan \phi^\prime
F_{\gamma s} = 1 – 0.4\frac{B}{L}
where L = length of the foundation (L > B)
Depth{}^† Condition (a): Df/B \leq  1 Hansen (1970)
F_{cd} = 1 + 0.4\frac{D_f}{B}
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\frac{D_f}{B}
F_{\gamma d} = 1
Condition (b): D_f /B \gt   1
F_{cd} = 1 +( 0.4)\tan^{-1}\left(\frac{D_f}{B}\right)
F_{qd}=1+2\tan\phi^\prime(1-\sin \phi^\prime)^2\tan^{-1}\left(\frac{D_f}{B}\right)
F_{\gamma d} = 1
Inclination F_{ci}=F_{qi}=\left(1-\frac{\beta^\circ}{90^\circ}\right)^2 Meyerhof (1963); Hanna
and Meyerhof (1981)
F_{\gamma i}=\left(1-\frac{\beta}{\phi^\prime}\right)^2
where β = inclination of the load on the foundation with respect to the vertical

F_{qs}=1+\left(\frac{B}{L}\right)\tan \phi^\prime=1+0.577=1.577

F_{\gamma s}=1-0.4\left(\frac{B}{L}\right)=0.6

F_{qd}=1+2\tan \phi^\prime(1-\sin \phi^\prime)^2 \frac{D_f}{B}=1+\frac{(0.289)(2.3)}{B}=1+\frac{0.665}{B}

 

F_{\gamma d}=1

F_{qi}=\left(1-\frac{\beta^\circ}{90^\circ}\right)^2=\left(1-\frac{20}{90}\right)^2=0.605

F_{\gamma i}=\left(1-\frac{\beta^\circ}{\phi^\prime}\right)^2=\left(1-\frac{20}{30}\right)^2=0.11

Hence,

q_u = (263.35)(18.4)(1.577)\left(1+\frac{0.665}{B}\right)(0.605)+ (0.5)(114.5)(B)(22.4)(0.6)(1)(0.11)
= 4623.15 +\frac{3074.4}{B}+ 84.6B (a)
Thus,
q_{all}= \frac{q_u}{3} = 1541.05 +\frac{1024.8}{B}+28.2B  (b)

For Q = total vertical allowable load = q_{all}\times B^2 or
q_{all} = \frac{Q^\prime \cos 20}{B^2}=\frac{ (59,600)(\cos 20)}{B^2} (c)
Equating the right-hand sides of Eqs. (b) and (c) gives
\frac{56,006}{B^2}= 1541.05 +\frac{1024.8}{B}+28.2 B
By trial and error, we find B ≈ 5.5 ft

Related Answered Questions