Question 12.4: A square pillar is subjected to a compressive force Q = 3500...

A square pillar is subjected to a compressive force Q = 3500 kN and a bending moment M = 85 kN m. Calculate the dimension of the square cross-section, if the allowable stresses in tension and compression are 18 MPa and 6 MPa, respectively. Neglect the weight of the pillar.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let each side of the square cross-section be b mm. Then
Compressive stress due to Q is found as

\sigma_1=\frac{3500\left(10^3\right)}{b^2}=\frac{3 \cdot 5\left(10^6\right)}{b^2}  MPa

Normal stress due to M (maximum) is

\sigma_2=\pm \frac{M}{z}=\pm \frac{6 M}{b^3}=\pm \frac{(6)(85)\left(10^6\right)}{b^3}=\pm \frac{510\left(10^6\right)}{b^3}  MPa

Maximum compressive stress is

\left(\sigma_{ C }\right)_{\max }=\frac{3.5 \times 10^6}{b^2}+\frac{510 \times 10^6}{b^3}  MPa                (1)

and maximum tensile stress is

\left(\sigma_{ t }\right)_{\max }=\frac{510\left(10^6\right)}{b^3}-\frac{(3.5)\left(10^6\right)}{b^2}  MPa            (2)

Therefore, from Eq. (1)

\frac{3.5 \times 10^6}{b^2}+\frac{510 \times 10^6}{b^3}=18

\Rightarrow 18 b^3-3.5 \times 10^6 b-510 \times 10^6=0

\Rightarrow b^3-194.44\left(10^3\right) b-28.33\left(10^6\right)=0

Solving, we get b = 500.9874 mm ⇒ b ≥ 500.9874 mm. Similarly, from Eq. (2), we get

\frac{510\left(10^6\right)}{b^3}-\frac{(3.5)\left(10^6\right)}{b^2}=6

\Rightarrow \quad 510\left(10^6\right)-3.5\left(10^6\right) b=6 b^3

\Rightarrow \quad 6 b^3+3.5\left(10^6\right) b-510\left(10^6\right)=0

\Rightarrow b^3+583.33\left(10^3\right) b-85\left(10^6\right)=0

Solving, we get b = 140.918 mm ⇒ b ≥ 140.918 mm.
Thus, the required dimension is maximum of the two values, that is, b = 500.99 mm ≈ 501 mm.

Related Answered Questions

Question: 12.12

Verified Answer:

Let us draw the free-body diagram of the segment B...