Question 1.24: A steel bar 50 mm x 50 mm x 300 mm is under compressive load...

A steel bar 50 mm x 50 mm x 300 mm is under compressive load of 100 kN applied in the direction of its length. Find the changes in length and volume if all lateral strains are prevented. Also find the apparent modulus of elasticity if E = 200 GPa and µ = 0.3.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

\sigma_x, \sigma_y  and  \sigma_z are compressive and therefore taken -ve in Eq. (1.23),

\varepsilon_x=\frac{1}{E}\left[-\sigma_x+\mu\left(\sigma_y+\sigma_z\right)\right]

 

\varepsilon_y=\frac{1}{E}\left[-\sigma_y+\mu\left(\sigma_z+\sigma_x\right)\right]=0

 

\varepsilon_z=\frac{1}{E}\left[-\sigma_z+\mu\left(\sigma_y+\sigma_x\right)\right]=0

By symmetry, \sigma_y=\sigma_z=\sigma

or,  -\sigma+0.3\left(\sigma_x+\sigma\right)=0

or, \sigma=\frac{0.3 \sigma_x}{0.7}=\frac{0.3 \times 100000}{0.7 \times 50 \times 50}=17.14  N / mm ^2

which gives, \varepsilon_x =\frac{1}{200000}(-40+0.3 \times 2 \times 17.14)  =-0.00014858  mm / mm

or, \Delta L=-0.00014858 \times 300=-0.044574  mm

Apparent modulus of elasticity,

E_{m, x}=\frac{\sigma_x}{\varepsilon_x}=\frac{40}{0.00014858}=269215  N / mm ^2

Change in volume =\Delta L \times A=-0.0446 \times 50 \times 50  =111.5  mm ^3

Related Answered Questions

Question: 1.30

Verified Answer:

Static deflection of the beam, \sigma_{s t}...
Question: 1.26

Verified Answer:

An element ABCD shown in Fig. 1.35, deforms to [la...
Question: 1.25

Verified Answer:

Figure E. 1.34 shows an element under radial stres...