Question 10.SP.7: A steel column having an effective length of 16 ft is loaded...

A steel column having an effective length of 16  \mathrm{ft} is loaded eccentrically as shown. Using the interaction method, select the wide-flange shape of 8-in. nominal depth that should be used. Assume E=29 \times 10^{6} psi and \sigma_{Y}=36  \mathrm{ksi}, and use an allowable stress in bending of 22  \mathrm{ksi}.

10.7a
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

So that we can select a trial section, we use the allowable-stress method with \sigma_{\text {all }}=22  \mathrm{ksi} and write

\sigma_{\text {all }}=\frac{P}{A}+\frac{M c}{I_{x}}=\frac{P}{A}+\frac{M c}{A r_{x}^{2}}     (1)

From Appendix C we observe for shapes of 8 -in. nominal depth that c \approx 4 in. and r_{x} \approx 3.5  \mathrm{in}. Substituting into Eq. (1), we have

22  \mathrm{ksi}=\frac{85  \mathrm{kips}}{A}+\frac{(425  \mathrm{kip} \cdot \mathrm{in} .)(4  \mathrm{in} .)}{A(3.5  \mathrm{in} .)^{2}} \quad A \approx 10.2 \mathrm{in}^{2}

We select for a first trial shape: \mathrm{W} 8 \times 35.

Trial 1: W8 \times 35. The allowable stresses are

Allowable Bending Stress: (see data ) \quad\left(\sigma_{\text {all }}\right)_{\text {bending }}=22  \mathrm{ksi}

Allowable Concentric Stress: The largest slenderness ratio of the column is L / r_{y}=(192  \mathrm{in}) /.\left(2.03  \mathrm{in}\right..) =94.6. Using Eq. (10.41) with E=29 \times 10^{6}  \mathrm{psi} and \sigma_{Y}=36  \mathrm{ksi}, we find that the slenderness ratio at the junction between the two equations for \sigma_{c r} is L / r=133.7. Thus, we use Eqs. (10.38) and (10.39) and find that \sigma_{c r}=22.5  \mathrm{ksi}. Using Eq. (10.42), the allowable stress is

\left(\sigma_{\text {all }}\right)_{\text {centric }}=22.5 / 1.67=13.46   \mathrm{ksi}

For the W8 \times 35 trial shape, we have

\frac{P}{A}=\frac{85  \mathrm{kips}}{10.3  \mathrm{in}^{2}}=8.25  \mathrm{ksi} \quad \frac{M c}{I}=\frac{M}{S_{x}}=\frac{425   \mathrm{kip} \cdot \mathrm{in} .}{31.2  \mathrm{in}^{3}}=13.62   \mathrm{ksi}

With this data we find that the left-hand member of Eq. (10.60) is

\frac{P / A}{\left(\sigma_{\text {all }}\right)_{\text {centric }}}+\frac{M c / I}{\left(\sigma_{\text {all }}\right)_{\text {bending }}}=\frac{8.25  \mathrm{ksi}}{13.46  \mathrm{ksi}}+\frac{13.62  \mathrm{ksi}}{22  \mathrm{ksi}}=1.232

Since 1.232>1.000, the requirement expressed by the interaction formula is not satisfied; we must select a larger trial shape.

Trial 2: W8 \times 48. Following the procedure used in trial 1, we write

\begin{gathered} \frac{L}{r_{y}}=\frac{192  \mathrm{in} .}{2.08  \mathrm{in} .}=92.3 \quad\left(\sigma_{\text {all }}\right)_{\text {centric }}=13.76  \mathrm{ksi} \\ \frac{P}{A}=\frac{85  \mathrm{kips}}{14.1  \mathrm{in}^{2}}=6.03  \mathrm{ksi} \quad \frac{M c}{I}=\frac{M}{S_{x}}=\frac{425  \mathrm{kip} \cdot \mathrm{in} .}{43.2  \mathrm{in}^{3}}=9.84  \mathrm{ksi} \end{gathered}

Substituting into Eq. (10.60) gives

\frac{P / A}{\left(\sigma_{\text {all }}\right)_{\text {centric }}}+\frac{M c / I}{\left(\sigma_{\text {all }}\right)_{\text {bending }}}=\frac{6.03  \mathrm{ksi}}{13.76  \mathrm{ksi}}+\frac{9.82  \mathrm{ksi}}{22  \mathrm{ksi}}=0.885<1.000

The W8 \times 48 shape is satisfactory but may be unnecessarily large.

Trial 3: W8 \times 40. Following again the same procedure, we find that the interaction formula is not satisfied.

Selection of Shape. The shape to be used is \quad W8 \times 48

10.7b
10.7c
10.7d
10.7e

Related Answered Questions

Question: 10.SP.2

Verified Answer:

Effective Length. Since the column has one end fix...
Question: 10.SP.1

Verified Answer:

Buckling in x y Plane. Referring to...
Question: 10.02

Verified Answer:

From Appendix C we find that, for an \mathr...
Question: 10.SP.6

Verified Answer:

Using Eq. (10.60), we write \frac{P / A}{\l...
Question: 10.SP.5

Verified Answer:

The largest slenderness ratio of the column is [la...
Question: 10.SP.3

Verified Answer:

We first compute the value of the slenderness rati...
Question: 10.SP.4

Verified Answer:

For the cross section of a solid circular rod, we ...
Question: 10.05

Verified Answer:

The value of \left(\sigma_{\text {all }}\ri...
Question: 10.04

Verified Answer:

We first compute the radius of gyration r[/...
Question: 10.03

Verified Answer:

We note that c=0.90 for glued lamin...