Question 11.6: A steel column is constructed from a W 250 × 89 wide-flange ...
A steel column is constructed from a W 250 × 89 wide-flange section (Fig. 11-38). Assume that the column has pin supports and may buckle in any direction. Also, assume that the steel has a modulus of elasticity of E = 200 GPa and a yield stress of σY=250 MPa.
(a) If the length of the column is L = 6.5 m, what is the allowable axial load?
(b) If the column is subjected to an axial load P = 890 kN, what is the maximum permissible length?

Learn more on how we answer questions.
Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
1, 2. Conceptualize, Categorize: Use the AISC formulas of Eqs. (11-82) through (11-86) when analyzing this column. Since the column has pin supports, the effective-length factor K = 1. Also, since the column will buckle about the weak axis of bending, use the smaller radius of gyration r = 65.3 mm, as obtained from Table F-1(b), Appendix F. The critical slenderness ratio [Eq. (11-83)] is
(rKL)c=4.71σYE=4.71250 MPa200 GPa=133.2 (a)
σe=(rKL)2π2E (11-82)
σallow =1.67σcr (11-86)
Part (a): Allowable axial load.
3, 4. Analyze, Finalize: If the length L = 6.5 m, the slenderness ratio of the column is
rL=65.3 mm6.5 m=99.5which is less than the critical ratio of Eq. (a), so obtain the critical stress using Eq. (11-84) with
rKL≤4.71σYE (11-84)
σcr=(0.658σY/σe)σY=(0.6581.254)250 MPa=147.9 MPawhere
σY/σe=250 MPa/199.4 MPa=1.254and
σe=(rKL)2π2E=99.52π2(200 GPa)=199.4 MPaThe allowable stress is
σallow =1.67σcr=1.67147.9 MPa=88.6 MPaSince the cross-sectional area of the column is A = 11,400 mm² [from Table F-1(b)], the allowable axial load is
Pallow =σallow A=88.6 MPa(11,400 mm2)=1010 kNPart (b): Maximum permissable length.
To determine the maximum length when the axial load P = 890 kN, begin with an estimated value of the length and then use a trial-and-error procedure. Note that when the load P = 890 kN, the maximum length is greater than 6.5 m (because a length of 6.5 m corresponds to an axial load of 1010 kN). Therefore, as a trial value, assume L = 7 m. The corresponding slenderness ratio is
rL=65.3 mm7000 mm=107.2which is less than the critical ratio in Eq. (a). First, use Eq. (11-82) to find the elastic buckling stress as
σe=(rKL)2π2E=107.22π2(200 GPa)=171.8 MPaThen use Eqs. (11-84) and (11-86) to find the allowable stress:
σallow =1.67σcr=1.67(0.658250 MPa/171.8 MPa)250 MPa=81.4 MPaThe allowable load is
Pallow =σallow A=81.4 MPa(11,400 mm2)=928 kNwhich is greater than the given load of 890 kN, so the permissible length is greater than 7 m. With further trials, the permissible length is found to be
L=7.2 mPallow =896 kNL=7.3 mPallow =880 kN
Interpolate between these results to find that the maximum permissible length is approximately 7.24 m, as confirmed by
rL=65.3 mm7240 mm=110.9 so σe=110.92π2(200 GPa)=160.5 MPaand
σallow =1.67(0.658250 MPa/160.5 MPa)250 MPa=78 MParesulting in
Pallow =(78 MPa)(11,400 mm2)=889.2 kNHence, the maximum permissible length of the column is 7.24 m.
Table F-1(b) | ||||||||||||
Properties of Wide-Flange Sections (W Shapes)—SI Units (Abridged List) | ||||||||||||
Designation | Mass per Meter | Area | Depth | Web Thickness |
Flange | Axis 1–1 | Axis 2-2 | |||||
Width | Thickness | I | S | r | I | S | r | |||||
Kg | mm² | mm | mm | mm | mm | ×106mm4 | ×103mm3 | mm | ×106mm4 | ×103mm3 | mm | |
W 760 × 314 | 314 | 40100 | 785 | 19.7 | 384 | 33.5 | 4290 | 10900 | 328 | 315 | 1640 | 88.6 |
W 760 × 196 | 196 | 25100 | 770 | 15.6 | 267 | 25.4 | 2400 | 6230 | 310 | 81.6 | 610 | 57.2 |
W 610 × 241 | 241 | 30800 | 635 | 17.9 | 330 | 31.0 | 2150 | 6780 | 264 | 184 | 1120 | 77.5 |
W 610 × 140 | 140 | 17900 | 617 | 13.1 | 230 | 22.2 | 1120 | 3640 | 251 | 45.4 | 393 | 50.3 |
W 460 × 177 | 177 | 22600 | 483 | 16.6 | 287 | 26.9 | 912 | 3790 | 201 | 105 | 736 | 68.3 |
W 460 × 106 | 106 | 13400 | 470 | 12.6 | 194 | 20.6 | 487 | 2080 | 191 | 25.1 | 259 | 43.2 |
W 410 × 149 | 149 | 19000 | 432 | 14.9 | 264 | 25.0 | 620 | 2870 | 180 | 77.4 | 585 | 63.8 |
W 410 × 114 | 114 | 14600 | 419 | 11.6 | 262 | 19.3 | 462 | 2200 | 178 | 57.4 | 441 | 62.7 |
W 410 × 85 | 85.0 | 10800 | 417 | 10.9 | 181 | 18.2 | 316 | 1510 | 171 | 17.9 | 198 | 40.6 |
W 410 × 46.1 | 46.1 | 5890 | 404 | 6.99 | 140 | 11.2 | 156 | 773 | 163 | 5.16 | 73.6 | 29.7 |
W 360 × 179 | 179 | 22800 | 368 | 15.0 | 373 | 23.9 | 574 | 3110 | 158 | 206 | 1110 | 95.0 |
W 360 × 122 | 122 | 15500 | 363 | 13.0 | 257 | 21.7 | 367 | 2020 | 154 | 61.6 | 480 | 63.0 |
W 360 × 79 | 79.0 | 10100 | 353 | 9.40 | 205 | 16.8 | 225 | 1270 | 150 | 24.0 | 234 | 48.8 |
W 360 × 39 | 39.0 | 4960 | 353 | 6.48 | 128 | 10.7 | 102 | 578 | 144 | 3.71 | 58.2 | 27.4 |
W 310 × 129 | 129 | 16500 | 318 | 13.1 | 307 | 20.6 | 308 | 1930 | 137 | 100 | 651 | 78.0 |
W 310 × 74 | 74.0 | 9420 | 310 | 9.40 | 205 | 16.3 | 163 | 1050 | 132 | 23.4 | 228 | 49.8 |
W 310 × 52 | 52.0 | 6650 | 318 | 7.62 | 167 | 13.2 | 119 | 747 | 133 | 10.2 | 122 | 39.1 |
W 310 × 21 | 21.0 | 2680 | 302 | 5.08 | 101 | 5.72 | 36.9 | 244 | 117 | 0.982 | 19.5 | 19.1 |
W 250 × 89 | 89.0 | 11400 | 259 | 10.7 | 257 | 17.3 | 142 | 1090 | 112 | 48.3 | 377 | 65.3 |
W 250 × 67 | 67.0 | 8580 | 257 | 8.89 | 204 | 15.7 | 103 | 805 | 110 | 22.2 | 218 | 51.1 |
W 250 × 44.8 | 44.8 | 5700 | 267 | 7.62 | 148 | 13.0 | 70.8 | 531 | 111 | 6.95 | 94.2 | 34.8 |
W 250 × 17.9 | 17.9 | 2280 | 251 | 4.83 | 101 | 5.33 | 22.4 | 179 | 99.1 | 0.907 | 18.0 | 19.9 |
W 200 × 52 | 52.0 | 6650 | 206 | 7.87 | 204 | 12.6 | 52.9 | 511 | 89.2 | 17.7 | 174 | 51.6 |
W 200 × 41.7 | 41.7 | 5320 | 205 | 7.24 | 166 | 11.8 | 40.8 | 398 | 87.6 | 9.03 | 109 | 41.1 |
W 200 × 31.3 | 31.3 | 3970 | 210 | 6.35 | 134 | 10.2 | 31.3 | 298 | 88.6 | 4.07 | 60.8 | 32.0 |
W 200 × 22.5 | 22.5 | 2860 | 206 | 6.22 | 102 | 8.00 | 20.0 | 193 | 83.6 | 1.42 | 27.9 | 22.3 |