Question 3.18: A steel disc with 300 mm outside diameter, 40 mm bore diamet...
A steel disc with 300 mm outside diameter, 40 mm bore diameter and 5 mm thickness is subjected to a temperature distribution of the following form:
T = \left(\frac{200 r^{2}}{150^{2}} \right)° Cwhere r is the radius in mm. Find the hoop stress at the bore.

Learn more on how we answer questions.
The governing differential equation is:
r^{2} \frac{d^{2}\sigma _{r}}{dr^{2}} + 3r\frac{d \sigma _{r}}{dr} = – E\alpha r\frac{dT}{dr} = – E\alpha r\frac{400r}{150^{2}} = 400 E\alpha \frac{r^{2}}{150^{2}}P.I. = Cr² (say)
∴ r^{2} \cdot 2C + 3r \cdot 2Cr = – 400E\alpha \frac{r^{2}}{150^{2}}
i.e. C = \frac{- 50 E\alpha }{150^{2}}
∴ \sigma _{r} = A – \frac{B}{r^{2}} – 50 E\alpha \frac{r^{2}}{150^2}
Boundary conditions:
At r = 20 mm, \sigma _{r} = 0
∴ 0 = A – \frac{B}{20^{2}} – 50 E\alpha \frac{20^{2}}{150^2} (a) (3.102)
At r = 150 mm, \sigma _{r} = 0
0 = A – \frac{B}{150^{2}} – 50 E\alpha \frac{150^{2}}{150^2} (b) (3.103)
Subtracting (3.103) from (3.102) gives:
0 = B\left(\frac{1}{22 500} – \frac{1}{400} \right) + 50E\alpha \left(1 – \frac{400}{150^{2}} \right)
i.e. B = 20 000Eα
Substituting B in (3.103) gives:
A = \frac{20 000E\alpha }{22 500} + 50E\alpha = 50.88E\alphaSo \sigma _{r} + r\frac{d\sigma _{r}}{dr} = A – \frac{B}{r^{2}} – 50E\alpha \frac{r^{2}}{150 ^{2}} + r \left(\frac{2B}{r^{3}} – \frac{100E \alpha r}{150^{2}} \right)
i.e. \sigma _{\theta } = A + \frac{B}{r^{2}} – 150 E\alpha \frac{r^{2}}{150^{2}} = \left(50.88 + \frac{20 000}{r^{2}} – \frac{r^{2}}{150} \right) E\alpha
At r = 20:
\sigma _{\theta } = \left(50.88 + \frac{20 000}{400} – \frac{400}{150} \right)E\alpha = 98.22E\alphai.e. \sigma _{\theta } = 223.9 N/mm^{2} (at r = 20 mm)
