Question 3.18: A steel disc with 300 mm outside diameter, 40 mm bore diamet...

A steel disc with 300 mm outside diameter, 40 mm bore diameter and 5 mm thickness is subjected to a temperature distribution of the following form:

T = \left(\frac{200 r^{2}}{150^{2}} \right)° C

where r is the radius in mm. Find the hoop stress at the bore.

3.147
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The governing differential equation is:

r^{2} \frac{d^{2}\sigma _{r}}{dr^{2}} + 3r\frac{d \sigma _{r}}{dr} = –  E\alpha r\frac{dT}{dr} = –  E\alpha r\frac{400r}{150^{2}} = 400 E\alpha \frac{r^{2}}{150^{2}}

P.I. = Cr²  (say)

∴        r^{2} \cdot 2C + 3r \cdot 2Cr = –  400E\alpha \frac{r^{2}}{150^{2}}

i.e. C = \frac{-  50 E\alpha }{150^{2}}

\sigma _{r} = A  –  \frac{B}{r^{2}}  –  50 E\alpha \frac{r^{2}}{150^2}

Boundary conditions:
At r = 20 mm, \sigma _{r} = 0

∴         0 = A  –  \frac{B}{20^{2}}  –  50 E\alpha \frac{20^{2}}{150^2}    (a)                  (3.102)
At r = 150 mm, \sigma _{r} = 0
0 = A – \frac{B}{150^{2}} – 50 E\alpha \frac{150^{2}}{150^2}    (b)                   (3.103)
Subtracting (3.103) from (3.102) gives:
0 = B\left(\frac{1}{22  500}  –  \frac{1}{400} \right) + 50E\alpha \left(1  –  \frac{400}{150^{2}} \right)

i.e.               B = 20 000Eα

Substituting B in (3.103) gives:

A = \frac{20  000E\alpha }{22  500} + 50E\alpha = 50.88E\alpha

So        \sigma _{r} + r\frac{d\sigma _{r}}{dr} = A  –  \frac{B}{r^{2}}  –  50E\alpha \frac{r^{2}}{150 ^{2}} + r \left(\frac{2B}{r^{3}}  –  \frac{100E \alpha r}{150^{2}} \right)

i.e.      \sigma _{\theta } = A + \frac{B}{r^{2}}  –  150 E\alpha \frac{r^{2}}{150^{2}} = \left(50.88 + \frac{20  000}{r^{2}}  –  \frac{r^{2}}{150} \right) E\alpha

At r = 20:

\sigma _{\theta } = \left(50.88 + \frac{20  000}{400}  –  \frac{400}{150} \right)E\alpha = 98.22E\alpha

i.e.       \sigma _{\theta } = 223.9  N/mm^{2}  (at r = 20 mm)

3.148

Related Answered Questions

Question: 3.16

Verified Answer:

There is no restraint or applied loading (i.e. P =...