Question 9.SP.12: A steel forging consists of a 6 × 2 × 2-in. rectangular pris...

A steel forging consists of a 6 × 2 × 2-in. rectangular prism and two cylinders with a diameter of 2 in. and length of 3 in. as shown. Deter-mine the moments of inertia of the forging with respect to the coordinate axes. The specific weight of steel is 490 lb/ft³.

SP9.12-0
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STRATEGY: Compute the moments of inertia of each component from Fig. 9.28 using the parallel-axis theorem when necessary. Note that all lengths should be expressed in feet to be consistent with the units for the given specific weight.
MODELING and ANALYSIS:

Computation of Masses.
Prism

\begin{aligned}V &=(2 \text { in.})(2 \text { in.})(6 \text { in.})=24 \text { in }^{3} \\W &=\frac{\left(24 \text { in }^{3}\right)\left(490  \mathrm{lb} / \mathrm{ft}^{3}\right)}{1728  \mathrm{in}^{3} / \mathrm{ft}^{3}}=6.81   \mathrm{lb} \\m &=\frac{6.81   \mathrm{lb}}{32.2   \mathrm{ft} / \mathrm{s}^{2}}=0.211  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\end{aligned}

Each Cylinder

\begin{aligned}V &=\pi(1 \mathrm{in} .)^{2}(3 \mathrm{in} .)=9.42  \mathrm{in}^{3} \\W &=\frac{\left(9.42  \mathrm{in}^{3}\right)\left(490  \mathrm{lb} / \mathrm{ft}^{3}\right)}{1728 \mathrm{in}^{3} / \mathrm{ft}^{3}}=2.67  \mathrm{lb} \\m &=\frac{2.67  \mathrm{lb}}{32.2 \mathrm{ft} / \mathrm{s}^{2}}=0.0829  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\end{aligned}

Moments of Inertia (Fig. 1).
Prism

\begin{aligned}&I_{x}=I_{z}=\frac{1}{12}\left(0.211  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left[\left(\frac{6}{12} \mathrm{ft}\right)^{2}+\left(\frac{2}{12} \mathrm{ft}\right)^{2}\right]=4.88 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2} \\&I_{y}=\frac{1}{12}\left(0.211  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left[\left(\frac{2}{12} \mathrm{ft}\right)^{2}+\left(\frac{2}{12} \mathrm{ft}\right)^{2}\right]=0.977 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2}\end{aligned}

Each Cylinder

\begin{aligned}I_{x}=\frac{1}{2} m a^{2}+m \bar{y}^{2}=\frac{1}{2}\left(0.0829  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left(\frac{1}{12} \mathrm{ft}\right)^{2} \\+\left(0.0829  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left(\frac{2}{12} \mathrm{ft}\right)^{2}=2.59 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2} \\I_{y}=\frac{1}{12} m\left(3 a^{2}+L^{2}\right)=m \bar{x}^{2}=\frac{1}{12}\left(0.0829  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left[3\left(\frac{1}{12} \mathrm{ft}\right)^{2}+\left(\frac{3}{12} \mathrm{ft}\right)^{2}\right] \\+\left(0.0829  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left(\frac{2.5}{12} \mathrm{ft}\right)^{2}=4.17 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2} \\I_{z}=\frac{1}{12} m\left(3 a^{2}+L^{2}\right)+m\left(\bar{x}^{2}+\bar{y}^{2}\right)=\frac{1}{12}\left(0.0829  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left[3\left(\frac{1}{12} \mathrm{ft}\right)^{2}+\left(\frac{3}{12} \mathrm{ft}\right)^{2}\right] \\+\left(0.0829  \mathrm{lb} \cdot \mathrm{s}^{2} / \mathrm{ft}\right)\left[\left(\frac{2.5}{12} \mathrm{ft}\right)^{2}+\left(\frac{2}{12}\mathrm{ft}\right)^{2}\right]=6.48 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2}\end{aligned}

Entire Body. Adding the values obtained for the prism and two cylinders, you have

\begin{array}{lrl}I_{x} & =4.88 \times 10^{-3}+2\left(2.59 \times 10^{-3}\right) & I_{x}=10.06 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2} \\I_{y} & =0.977 \times 10^{-3}+2\left(4.17 \times 10^{-3}\right) & I_{y}=9.32 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2} \\I_{z} & =4.88 \times 10^{-3}+2\left(6.48 \times 10^{-3}\right) & I_{z}=17.84 \times 10^{-3}  \mathrm{lb} \cdot \mathrm{ft} \cdot \mathrm{s}^{2}\end{array}

REFLECT and THINK: The results indicate this forging has more resistance to rotation about the z axis (largest moment of inertia) than about the x or y axes. This makes intuitive sense, because more of the mass is farther from the z axis than from the x or y axes.

SP9.12-1
9.28

Related Answered Questions

Question: 9.SP.1

Verified Answer:

STRATEGY: To find the moment of inertia with respe...
Question: 9.SP.10

Verified Answer:

STRATEGY: You can approach this problem by choosin...