Question 3.6: A stepped circular shaft is built in at both ends; the two s...

A stepped circular shaft is built in at both ends; the two shaft segments are the same length, l. If the stepped shaft is made from an elastic–perfectly plastic material with τ_{γ} = 100N/mm², find the magnitude of the torque applied at the step to just cause yield in the smaller shaft.

3.44
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Stress–strain behaviour

Equilibrium

                     T = T_{1} + T_{2}

The small shaft just reaches yield, so the linear elastic torsion equation can be used for that shaft, i.e.

                                        \frac{T}{J} = \frac{\tau }{r} = \frac{G\theta }{l}

 

\Rightarrow                          \frac{T_{2}}{\frac{\pi  \times  20^{4}}{32} }  mm^{4} = \frac{100  N/ mm^{2}}{10  mm}

 

\Rightarrow                               T_{2} = 157.1 \times 10^{3} Nmm = 157.1   Nm

For the large shaft, θ and l are the same as the small shaft, and since \gamma = \frac{r\theta }{l} (elastic or plastic), then

                              \gamma _{1}|_{r =   10  mm} = \gamma _{2}|_{r = 10  mm}

Therefore, shaft 1 must also be elastic for r < 10 mm and will be plastic for r > 10 mm.
Thus, for the large shaft,

for                             r < 10  mm, \tau = \tau _{\gamma }\frac{r}{10} = 10r

for                           r > 10  mm, \tau = \tau _{\gamma } = 100  N/mm^{2}

Equilibrium

T_{1} = \int_{r = 0}^{r = 10} \underset{\underset{Torque  arm \times force}{} }{\underset{|}{r} } \times \underbrace{10r}_{stress} \times \underset{\underset{\underset{\times }{} }{} }{} \underbrace{2\pi rdr}_{area} + \int_{r = 10}^{r = 20} \underset{\underset{Torque  arm \times force}{} }{\underset{|}{r} } \times \underbrace{100}_{stress} \times \underset{\underset{\underset{\times }{} }{} }{} \underbrace{2\pi rdr}_{area}

T_{1} = 20\pi \int_{0}^{10}{ r^{3} dr} + 200\pi \int_{10}^{20}{r^{2}dr}

= 20\pi \left[\frac{r^{4}}{4} \right]^{10}_{0} + 200\pi \left[\frac{r^{3}}{3} \right]^{20}_{10}

= 20\pi \times \frac{10^{4}}{4} + 200\pi \left[\frac{20^{3}}{3} – \frac{10^{3}}{3} \right]

i.e.                                               T_{1} = 1623 \times 10^{3} Nmm = 1623  Nm

i.e.                                                       total torque = T = T_{1} + T_{2}

= (1623 + 157.1) Nm

∴                                                   T = 1780 Nm

3.45
3.46
3.47

Related Answered Questions

Question: 3.16

Verified Answer:

There is no restraint or applied loading (i.e. P =...