Question 12.5: A surface emits as a blackbody at 1500 K. What is the rate p...

A surface emits as a blackbody at 1500 K. What is the rate per unit area (W/m²) at which it emits radiation over all directions corresponding to 0° ≤ θ ≤ 60° and over the wavelength interval 2 μm ≤ λ ≤ 4 μm?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Known: Temperature of a surface that emits as a blackbody.

Find: Rate of emission per unit area over all directions between θ = 0° and 60° and over all wavelengths between λ = 2 and 4 μm.

Schematic:

Assumptions: Surface emits as a blackbody.

Analysis: The desired emission may be inferred from Equation 12.15, with the limits of integration restricted as follows:

E = \int_{0}^{∞}\int_{0}^{2\pi}\int_{0}^{\pi/2}{ I_{λ,e} (λ, θ, \phi)  \cos θ \sin θ  dθ  d\phi  dλ}              (12.15)

ΔE = \int_{2}^{4}\int_{0}^{2\pi}\int_{0}^{\pi/3}{ I_{λ,b}  \cos θ \sin θ  dθ  d\phi  dλ}

or, since a blackbody emits diffusely,

ΔE = \int_{2}^{4}{I_{λ,b}}\left(\int_{0}^{2\pi}\int_{0}^{\pi/3}{\cos θ \sin θ  dθ  d\phi}\right)dλ

ΔE = \int_{2}^{4}{I_{λ,b}}\left(2\pi\frac{\sin^{2}θ}{2}\bigg|^{\pi/3}_{0}\right)dλ = 0.75 \int_{2}^{4}{\pi I_{λ,b}}dλ

Substituting from Equation 12.16 and multiplying and dividing by E_{b}, this result may be put in a form that allows for use of Table 12.2 in evaluating the spectral integration. In particular,

TABLE 12.2 Blackbody Radiation Functions
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} \pmb{F_{(0 → λ)}} λT (μm · K)
0.000000 0.375034 × 10^{-27} 0.000000 200
0.000000 0.490335 × 10^{-13} 0.000000 400
0.000014 0.104046 × 10^{-8} 0.000000 600
0.001372 0.991126 × 10^{-7} 0.000016 800
0.016406 0.118505 × 10^{-5} 0.000321 1,000
0.072534 0.523927 × 10^{-5} 0.002134 1,200
0.186082 0.134411 × 10^{-4} 0.007790 1,400
0.344904 0.249130 0.019718 1,600
0.519949 0.375568 0.039341 1,800
0.683123 0.493432 0.066728 2,000
0.816329 0.589649 × 10^{-4} 0.100888 2,200
0.912155 0.658866 0.140256 2,400
0.970891 0.701292 0.183120 2,600
0.997123 0.720239 0.227897 2,800
1.000000 0.722318 × 10^{-4} 0.250108 2,898
0.997143 0.720254 × 10^{-4} 0.273232 3,000
0.977373 0.705974 0.318102 3,200
0.943551 0.681544 0.361735 3,400
0.900429 0.650396 0.403607 3,600
0.851737 0.615225 × 10^{-4} 0.443382 3,800
0.800291 0.578064 0.480877 4,000
0.748139 0.540394 0.516014 4,200
0.696720 0.503253 0.548796 4,400
0.647004 0.467343 0.579280 4,600
0.599610 0.433109 0.607559 4,800
0.554898 0.400813 0.633747 5,000
0.513043 0.370580 × 10^{-4} 0.658970 5,200
0.474092 0.342445 0.680360 5,400
0.438002 0.316376 0.701046 5,600
0.404671 0.292301 0.720158 5,800
0.373965 0.270121 0.737818 6,000
0.345724 0.249723 × 10^{-4} 0.754140 6,200
0.319783 0.230985 0.769234 6,400
0.295973 0.213786 0.783199 6,600
0.274128 0.198008 0.796129 6,800
0.254090 0.183534 0.808109 7,000
0.235708 0.170256 × 10^{-4} 0.819217 7,200
0.218842 0.158073 0.829527 7,400
0.203360 0.146891 0.839102 7,600
0.189143 0.136621 0.848005 7,800
0.176079 0.127185 0.856288 8,000
0.147819 0.106772 × 10^{-4} 0.874608 8,500
0.124801 0.901463 × 10^{-5} 0.890029 9,000
0.105956 0.765338 0.903085 9,500
0.090442 0.653279 × 10^{-5} 0.914199 10,000
0.077600 0.560522 0.923710 10,500
0.066913 0.483321 0.931890 11,000
0.057970 0.418725 0.939959 11,500
0.050448 0.364394 × 10^{-5} 0.945098 12,000
0.038689 0.279457 0.955139 13,000
0.030131 0.217641 0.962898 14,000
0.023794 0.171866 × 10^{-5} 0.969981 15,000
0.019026 0.137429 0.973814 16,000
0.012574 0.908240 × 10^{-6} 0.980860 18,000
0.008629 0.623310 0.985602 20,000
0.003828 0.276474 0.992215 25,000
0.001945 0.140469 × 10^{-6} 0.995340 30,000
0.000656 0.473891 × 10^{-7} 0.997967 40,000
0.000279 0.201605 0.998953 50,000
0.000058 0.418597 × 10^{-8} 0.999713 75,000
0.000019 0.135752 0.999905 100,000

E_{λ}(λ) = \pi I_{λ,e}(λ)              (12.16)

ΔE = 0.75E_{b} \int_{2}^{4}{\frac{E_{λ,b}}{E_{b}}}dλ = 0.75E_{b} [F_{(0→4)}  –  F_{(0→2)}]

where from Table 12.2

λ_{1}T = 2  μm × 1500  K = 3000  μm · K:\qquad F_{(0→2)} = 0.273

λ_{2}T = 4  μm × 1500  K = 6000  μm · K:\qquad F_{(0→4)} = 0.738

Hence

ΔE = 0.75(0.738  –  0.273)E_{b} = 0.75(0.465)E_{b}

From Equation 12.31, it then follows that

λ_{\max}T = C_{3}              (12.31)

ΔE = 0.75(0.465)5.67 × 10^{-8}  W/m^{2} · K^{4}  (1500  K)^{4} = 10^{5}  W/m^{2}

Comments: The total, hemispherical emissive power is reduced by 25% and 53.5% due to the directional and spectral restrictions, respectively.

12.5

Related Answered Questions

Question: 12.2

Verified Answer:

Known: Spectral distribution of surface irradiatio...