Question 12.5: A surface emits as a blackbody at 1500 K. What is the rate p...
A surface emits as a blackbody at 1500 K. What is the rate per unit area (W/m²) at which it emits radiation over all directions corresponding to 0° ≤ θ ≤ 60° and over the wavelength interval 2 μm ≤ λ ≤ 4 μm?
Learn more on how we answer questions.
Known: Temperature of a surface that emits as a blackbody.
Find: Rate of emission per unit area over all directions between θ = 0° and 60° and over all wavelengths between λ = 2 and 4 μm.
Schematic:
Assumptions: Surface emits as a blackbody.
Analysis: The desired emission may be inferred from Equation 12.15, with the limits of integration restricted as follows:
E = \int_{0}^{∞}\int_{0}^{2\pi}\int_{0}^{\pi/2}{ I_{λ,e} (λ, θ, \phi) \cos θ \sin θ dθ d\phi dλ} (12.15)
ΔE = \int_{2}^{4}\int_{0}^{2\pi}\int_{0}^{\pi/3}{ I_{λ,b} \cos θ \sin θ dθ d\phi dλ}
or, since a blackbody emits diffusely,
ΔE = \int_{2}^{4}{I_{λ,b}}\left(\int_{0}^{2\pi}\int_{0}^{\pi/3}{\cos θ \sin θ dθ d\phi}\right)dλ
ΔE = \int_{2}^{4}{I_{λ,b}}\left(2\pi\frac{\sin^{2}θ}{2}\bigg|^{\pi/3}_{0}\right)dλ = 0.75 \int_{2}^{4}{\pi I_{λ,b}}dλ
Substituting from Equation 12.16 and multiplying and dividing by E_{b}, this result may be put in a form that allows for use of Table 12.2 in evaluating the spectral integration. In particular,
TABLE 12.2 Blackbody Radiation Functions | |||
\pmb{\frac{I_{λ, b}(λ, T)}{I_{λ,b}(λ_{\max}, T)}} | \pmb{I_{λ, b}(λ, T)/σT^{5} (μm · K · sr)^{-1}} | \pmb{F_{(0 → λ)}} | λT (μm · K) |
0.000000 | 0.375034 × 10^{-27} | 0.000000 | 200 |
0.000000 | 0.490335 × 10^{-13} | 0.000000 | 400 |
0.000014 | 0.104046 × 10^{-8} | 0.000000 | 600 |
0.001372 | 0.991126 × 10^{-7} | 0.000016 | 800 |
0.016406 | 0.118505 × 10^{-5} | 0.000321 | 1,000 |
0.072534 | 0.523927 × 10^{-5} | 0.002134 | 1,200 |
0.186082 | 0.134411 × 10^{-4} | 0.007790 | 1,400 |
0.344904 | 0.249130 | 0.019718 | 1,600 |
0.519949 | 0.375568 | 0.039341 | 1,800 |
0.683123 | 0.493432 | 0.066728 | 2,000 |
0.816329 | 0.589649 × 10^{-4} | 0.100888 | 2,200 |
0.912155 | 0.658866 | 0.140256 | 2,400 |
0.970891 | 0.701292 | 0.183120 | 2,600 |
0.997123 | 0.720239 | 0.227897 | 2,800 |
1.000000 | 0.722318 × 10^{-4} | 0.250108 | 2,898 |
0.997143 | 0.720254 × 10^{-4} | 0.273232 | 3,000 |
0.977373 | 0.705974 | 0.318102 | 3,200 |
0.943551 | 0.681544 | 0.361735 | 3,400 |
0.900429 | 0.650396 | 0.403607 | 3,600 |
0.851737 | 0.615225 × 10^{-4} | 0.443382 | 3,800 |
0.800291 | 0.578064 | 0.480877 | 4,000 |
0.748139 | 0.540394 | 0.516014 | 4,200 |
0.696720 | 0.503253 | 0.548796 | 4,400 |
0.647004 | 0.467343 | 0.579280 | 4,600 |
0.599610 | 0.433109 | 0.607559 | 4,800 |
0.554898 | 0.400813 | 0.633747 | 5,000 |
0.513043 | 0.370580 × 10^{-4} | 0.658970 | 5,200 |
0.474092 | 0.342445 | 0.680360 | 5,400 |
0.438002 | 0.316376 | 0.701046 | 5,600 |
0.404671 | 0.292301 | 0.720158 | 5,800 |
0.373965 | 0.270121 | 0.737818 | 6,000 |
0.345724 | 0.249723 × 10^{-4} | 0.754140 | 6,200 |
0.319783 | 0.230985 | 0.769234 | 6,400 |
0.295973 | 0.213786 | 0.783199 | 6,600 |
0.274128 | 0.198008 | 0.796129 | 6,800 |
0.254090 | 0.183534 | 0.808109 | 7,000 |
0.235708 | 0.170256 × 10^{-4} | 0.819217 | 7,200 |
0.218842 | 0.158073 | 0.829527 | 7,400 |
0.203360 | 0.146891 | 0.839102 | 7,600 |
0.189143 | 0.136621 | 0.848005 | 7,800 |
0.176079 | 0.127185 | 0.856288 | 8,000 |
0.147819 | 0.106772 × 10^{-4} | 0.874608 | 8,500 |
0.124801 | 0.901463 × 10^{-5} | 0.890029 | 9,000 |
0.105956 | 0.765338 | 0.903085 | 9,500 |
0.090442 | 0.653279 × 10^{-5} | 0.914199 | 10,000 |
0.077600 | 0.560522 | 0.923710 | 10,500 |
0.066913 | 0.483321 | 0.931890 | 11,000 |
0.057970 | 0.418725 | 0.939959 | 11,500 |
0.050448 | 0.364394 × 10^{-5} | 0.945098 | 12,000 |
0.038689 | 0.279457 | 0.955139 | 13,000 |
0.030131 | 0.217641 | 0.962898 | 14,000 |
0.023794 | 0.171866 × 10^{-5} | 0.969981 | 15,000 |
0.019026 | 0.137429 | 0.973814 | 16,000 |
0.012574 | 0.908240 × 10^{-6} | 0.980860 | 18,000 |
0.008629 | 0.623310 | 0.985602 | 20,000 |
0.003828 | 0.276474 | 0.992215 | 25,000 |
0.001945 | 0.140469 × 10^{-6} | 0.995340 | 30,000 |
0.000656 | 0.473891 × 10^{-7} | 0.997967 | 40,000 |
0.000279 | 0.201605 | 0.998953 | 50,000 |
0.000058 | 0.418597 × 10^{-8} | 0.999713 | 75,000 |
0.000019 | 0.135752 | 0.999905 | 100,000 |
E_{λ}(λ) = \pi I_{λ,e}(λ) (12.16)
ΔE = 0.75E_{b} \int_{2}^{4}{\frac{E_{λ,b}}{E_{b}}}dλ = 0.75E_{b} [F_{(0→4)} – F_{(0→2)}]
where from Table 12.2
λ_{1}T = 2 μm × 1500 K = 3000 μm · K:\qquad F_{(0→2)} = 0.273
λ_{2}T = 4 μm × 1500 K = 6000 μm · K:\qquad F_{(0→4)} = 0.738
Hence
ΔE = 0.75(0.738 – 0.273)E_{b} = 0.75(0.465)E_{b}
From Equation 12.31, it then follows that
λ_{\max}T = C_{3} (12.31)
ΔE = 0.75(0.465)5.67 × 10^{-8} W/m^{2} · K^{4} (1500 K)^{4} = 10^{5} W/m^{2}
Comments: The total, hemispherical emissive power is reduced by 25% and 53.5% due to the directional and spectral restrictions, respectively.
