Question 7.4: A symmetrical p^+-n-p^+ bipolar transistor has the following...

A symmetrical p^+-n-p^+ bipolar transistor has the following properties:

                                    Emitter                                     Base

\\ \space \\ A = 10^{-4} cm²  \quad \quad \quad \quad \quad N_a = 10^{17} \quad \quad \quad \quad \quad \quad  Nd = 10^{15} cm^{-3} \\ \space \\  W_b = 1  μm \quad \quad \quad \quad \quad τ_n = 0.1  μs\quad \quad \quad \quad \quad \quad τ_p = 10  μs \\ \space \\ \quad \quad \quad \quad \quad \quad  \quad\quad \quad \quad \quad \quad  \quad μ_p = 200\quad \quad \quad \quad \quad \quad μ_n = 1300 cm² >V-s \\ \space \\ \quad \quad \quad \quad \quad \quad  \quad\quad \quad \quad \quad \quad μn = 700 \quad \quad \quad \quad \quad \quad μ_p = 450 cm² /V-s

(a) Calculate the saturation current I_{ES} = I_{CS}.
(b) With V_{EB} = 0.3  V  and  V_{CB} = -40  V, calculate the base current I_B, assuming perfect emitter injection efficiency.
(c) Calculate the base transport factor B, emitter injection efficiency γ, and amplification factor β, assuming that the emitter region is long compared with L_n.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

In the base,

p_n=n_i^2/n_n=(1.5 \times 10^{10})^2/10^{15}=2.25 \times 10^5 \\ \space \\ D_p=450(0.0259)=11.66, \space L_p=(11.66 \times 10^{-5})^{1/2}=1.08\times 10^{-2} \\ \space \\ W_b/L_p=10^{-4}/1.08\times 10^{-2}=9.26\times 10^{-3} \\ \space \\I_{ES}=I_{CS}=qA(D_p/L_p)p_nctnh(W_b/L_p) \\ \space \\ =(1.6\times 10^{-19})(10^{-4})(11.66/1.08\times 10^{-2})(2.25\times 10^5)ctnh \space 9.26\times 10^{-3} \\ \space \\ =4.2\times 10^{-13}A \\ \space \\ \Delta p_E=p_ne^{qV_{EB}/kT}, \Delta p_C\approx 0 \\ \space \\ \Delta p_E=2.25\times 10^5\times e^{(0.3/0.0259)}=2.4\times 10^{10} \\ \space \\ I_B=qA(D_p/L_p)\Delta p_E \tanh(W_b/2L_p)

or

I_B=\frac{Q_b}{\tau_p}=qAW_b\Delta p_E/2\tau_p=1.9\times 10^{-12}A

In the emitter,

D_n=700(0.0259)=18.13\\ \space \\ L_n=(18.13\times 10^{-7})^{1/2}=1.35\times 10^{-3}\\ \space \\ I_{En}=\frac{qAD_n^E}{L_n^E}n_p^Ee^{qV_{EB}/kT} \\ \space \\ I_{Ep}=\frac{qAD_p^B}{L_p^B}p_n^Bctnh\frac{W_b}{L_p^B}e^{qV_{EB}/kT} \\ \space \\ \gamma =\frac{I_{Ep}}{I_{En}+I_{Ep}}=\Big[1+\frac{I_{En}}{I_{Ep}}\Big]^{-1}\\ \space \\ \gamma =\Big[1+\frac{D_n^E/L_n^En_p^E}{D_p^B/L_p^Bn_n^B}\tanh\frac{W_b}{L_p}\Big]^{-1} \quad \quad \Big(use \space \frac{n_p^E}{p_n^B}=\frac{n_n^B}{p_p^E}\Big) \\ \space \\ =\Big[1+\frac{18.13\times 1.08\times 10^{-2}\times 10^{15}}{11.66\times 1.35\times 10^{-3}\times 10^{17}}\tanh9.26\times 10^{-3}\Big]^{-1}=0.99885 \\ \space \\ B=sech\frac{W_b}{L_p}=sech9.26\times 10^{-3}=0.99996 \\ \space \\ \alpha=B\gamma =(0.99885)(0.99996)=0.9988 \\ \space \\ \beta=\frac{\alpha}{1-\alpha}=\frac{0.9988}{0.0012}=832

Related Answered Questions