Question 5.11: A tracking station is located at Φ = 40° north latitude at a...

A tracking station is located at \phi = 40° north latitude at an altitude of H = 1 km. Three observations of an earth satellite yield the values for the topocentric right ascension and declination listed in the following table, which also shows the local sidereal time θ of the observation site.

Use the Gauss Algorithm 5.5 to estimate the state vector at the second observation time. Recall that µ = 398 600   km^{3}/s^{2}.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Data for Example 5.11

Observation Time

(seconds)

Right ascension,α

(degrees)

Declination,δ

(degrees)

Local sidereal time,θ

(degrees)

1 0 43.537 −8.7833 44.506
2 118.10 54.420 −12.074 45.000
3 237.58 64.318 −15.105 45.499

Recalling that the equatorial radius of the earth is R_{e} = 6378 km and the flattening factor is f = 0.003353, we substitute \phi = 40°, H = 1 km and the given values of θ into Equation 5.56 to obtain the inertial position vector of the tracking station at each of the three observation times:

R=\left[\frac{R_{e}}{\sqrt{1-(2f-f^{2})\sin^{2} \phi } } +H\right] \cos \phi (\cos \theta \hat{I}+\sin \theta \hat{J} )

+\left[\frac{R_{e}}{\sqrt{1-(2f-f^{2})\sin^{2} \phi } } +H\right]\sin \phi \hat{K}                 (5.56)
R_{1} = 3489.8 \hat{ I}+ 3430.2\hat{J}+ 4078.5\hat{K} (km)
R_{2} = 3460.1\hat{ I} + 3460.1\hat{J} + 4078.5\hat{K} (km)
R_{3} = 3429.9\hat{ I}+ 3490.1\hat{J} + 4078.5\hat{K} (km)
Using Equation 5.57 we compute the direction cosine vectors at each of the three observation times from the right ascension and declination data:

\hat{\varrho }=\cos \delta \cos \alpha \hat{I} +\cos \delta \sin \alpha \hat{J}+\sin \delta \hat{K}                      (5.57)
\hat{\varrho}_{1} = \cos(−8.7833°) \cos 43.537° \hat{ I} + \cos(−8.7833°) \sin 43.537° \hat{J} + \sin(−8.7833°)\hat{K}
= 0.71643 \hat{ I}+ 0.68074\hat{J} − 0.15270 \hat{K}
\hat{\varrho} _{2} = \cos(−12.074°) \cos 54.420° \hat{ I} + \cos(−12.074° ) \sin 54.420° \hat{J} + \sin(−12.074° )\hat{K}
= 0.56897 + 0.79531\hat{J} − 0.20917 \hat{K}
\hat{\varrho}_{ 3} = \cos(−15.105°) \cos 64.318° + \cos(−15.105°) \sin 64.318° \hat{J} + \sin(−15.105°)\hat{K}
= 0.41841\hat{ I} + 0.87007\hat{J} − 0.26059\hat{K}
We can now proceed with Algorithm 5.5.
Step 1:
\tau _{1} = 0 − 118.10 = −118.10  s
\tau _{3} = 237.58 − 118.10 = 119.47  s
\tau = 119.47 − (−118.1) = 237.58  s
Step 2:
p_{1} = \hat{\varrho} _{2} ×\hat{\varrho} _{3} = −0.025258\hat{ I} + 0.060753\hat{ J} + 0.16229\hat{K}
p_{2} = \hat{\varrho}_{1} × \hat{\varrho}_{ 3} = −0.044538\hat{ I} + 0.12281\hat{ J} + 0.33853\hat{K}
p_{3} = \hat{\varrho}_{1} × \hat{\varrho}_{2} = −0.020950 \hat{ I} + 0.062977\hat{ J} + 0.18246\hat{K}
Step 3:
D_{0} = \hat{\varrho}_{1} · p_{1} = −0.0015198
Step 4:
D_{11}= R_{1} · p_{1} = 782.15  km D_{12} = R_{1} · p_{2}= 1646.5  km D_{13} = R_{1} · p_{3} = 887.10  km
D_{21}= R_{2}· p_{1} = 784.72  km D_{22} = R_{2} · p_{2} = 1651.5  km D_{23} = R_{2} · p3 = 889.60  km
D_{31}= R_{3} · p_{1} = 787.31  km D_{32} = R_{3}  p_{2} = 1656.6  km D_{33} = R_{3} · p_{3} = 892.13  km
Step 5:

A=\frac{1}{−0.0015198}\left[−1646.5\frac{119.47}{237.58} + 1651.5 + 1656.6\frac{(−118.10)}{237.58} \right]= −6.6858  km

 

B=\frac{1}{6(−0.0015198)}\left\{1646.5(119.47^{2}− 237.58^{2})\frac{119.47}{237.58}\right.

 

+\left.1656.6[237.58^{2}− (−118.10)^{2}]\frac{(−118.10)}{237.58} \right\}

 

= 7.6667 × 10^{9}  km ·s^{2}

Step 6:
E = R_{2} · \hat{\varrho}_{2} = 3875.8  km

R_{2}^{2} = R_{2} · R_{2} = 4.058 × 10^{7}   km^{2}
Step 7:
a = −[(−6.6858)^{2} + 2(−6.6858)(3875.8) + 4.058 × 10^{7}] = −4.0528 × 10^{7} km^{2}
b = −2(389 600)(7.6667 × 10^{9})(−6.6858 + 3875.8) = −2.3597 × 10^{19} km^{5}
c = −(398 600)^{2}(7.6667 × 10^{9})^{2} = −9.3387 × 10^{30} km^{8}
Step 8:
F(x) = x^{8} − 4.0528 × 10^{7}x^{6} − 2.3597 × 10^{19}x^{3} − 9.3387 × 10^{30} = 0
The graph of F(x) in Figure 5.15 shows that it changes sign near x = 9000 km. Let us use that as the starting value in Newton’s method for finding the roots of F(x). For the case at hand, Equation 5.119 is

x_{i+1}=x_{i}-\frac{x_{i}^{8}+ax_{i}^{6}bx_{i}^{3}+c}{8x_{i}^{7}+6ax_{i}^{5}+3bx_{i}^{2}}           (5.119)

x_{i+1}=x_{i}-\frac{x_{i}^{8}-4.0528 × 10^{7}x_{i}^{6}− 2.3622 × 10^{19}x_{i}^{3}-9.3186 × 10^{30}}{x_{i}^{7}− 2.4317 × 10^{8}x_{i}^{5}− 7.0866 × 10^{19}x_{i}^{2}}

Stepping through Newton’s iterative procedure yields
x_{0} = 9000
x_{1} = 9000 − (−276.93) = 9276.9
x_{2} = 9276.9 − 34.526 = 9242.4
x_{3} = 9242.4 − 0.63428 = 9241.8
x_{4} = 9241.8 − 0.00021048 = 9241.8
Thus, after four steps we converge to
r_{2} = 9241.8  km
The other roots are either negative or complex and are therefore physically unacceptable.
Step 9:

\varrho _{1}=\frac{1}{-0.0015198}
\times \left\{\frac{ \begin{matrix} 6[787.31\frac{(-118.10)}{119.47}+784.72\frac{237.58}{119.47} ]9241.8^{3} \\ +398600· 787.31[237.58^{2}− (−118.10)^{2}]\frac{−118.10}{119.47} \end{matrix} }{6 · 9241.8^{3}+398600(237.58^{2}-119.47^{2})^{2}}− 782.15\right\}

= 3639.1 km

\varrho _{2}=−6.6858 +\frac{398 600 · 7.6667 × 10^{9} }{9241.8^{3}}= 3864.8  km

 

\varrho _{3}=\frac{1}{-0.0015198}\times \left[ \frac{\begin{matrix} 6(887.10\frac{119.47}{−118.10}− 889.60 \frac{237.58}{−118.10})9241.8^{3} \\ + 398 600 · 887.10(237.58^{2} − 119.47^{2})\frac{ 119.47}{−118.10} \end{matrix} }{6 · 9241.8^{3} + 398 600(237.58^{2} − 119.47^{2})}− 892.13 \right]

=4156.9 km

Step 10:
r_{1} = (3489.8\hat{ I} + 3430.2\hat{ J} + 4078.5 \hat{K } ) + 3639.1(0.71643 \hat{ I} + 0.68074\hat{ J} − 0.15270\hat{K } )
= 6096.9\hat{ I} + 5907.5 \hat{ J} + 3522.9\hat{K } (km)
r_{2} = (3460.1\hat{ I} + 3460.1\hat{ J} + 4078.5 \hat{K } ) + 3864.8(0.56897 \hat{ I} + 0.79531\hat{ J} − 0.20917 \hat{K } )
= 5659.1 \hat{ I} + 6533.8\hat{ J} + 3270.1\hat{K } (km)
r_{3} = (3429.9\hat{ I} + 3490.1\hat{ J} + 4078.5\hat{K } ) + 4156.9(0.41841 \hat{ I} + 0.87007\hat{ J} − 0.26059 \hat{K } )
= 5169.1 \hat{ I} + 7107.0 \hat{ J}+ 2995.3 \hat{K } (km)
Step 11:

f_{1}\approx 1-\frac{1}{2}\frac{398 600}{9241.8^{3}}(-118.10)^{2}= 0.99648

 

f_{3}\approx 1-\frac{1}{2}\frac{398 600}{9241.8^{3}}(119.47)^{2}=0.99640

 

g_{1}\approx−118.10 −\frac{1}{2}\frac{398 600}{9241.8^{3}}(-118.10)^{3}= −117.97

 

g_{3}\approx119.47−\frac{1}{2}\frac{398 600}{9241.8^{3}}(119.47)^{3}= 119.33

Step 12:

V_{2}=\frac{ \begin{matrix} −0.99640(6096.9\hat{ I} + 5907.5\hat{ J} + 3522.9\hat{K })+0.99648(5169.1 \hat{ I} +7107.0\hat{ J} \\ +2995.3\hat{K }) \end{matrix} }{0.99648 · 119.33 − 0.99640(−117.97)}

 

= −3.9080\hat{ I} + 5.0573 \hat{ J} − 2.2222\hat{K } (km/s)

In summary, the state vector at time t2 is, approximately,
\underline{r_{2} = 5659.1\hat{I } + 6533.8\hat{J } + 3270.1\hat{K } (km)}
\underline{v_{2} = −3.9080\hat{ I} + 5.0573\hat{J } − 2.2222\hat { K} (km/s)}

555

Related Answered Questions

Question: 5.5

Verified Answer:

Proceeding as in Example 5.4 we find that the Juli...