Question 11.19: A turbo-jet engine consumes air at the rate of 60.2 kg/s whe...

A turbo-jet engine consumes air at the rate of 60.2 kg/s when flying at a speed of 1000 km/h. Calculate :
(i) Exit velocity of the jet when the enthalpy change for the nozzle is 230 kJ/kg and velocity co-efficient is 0.96.
(ii) Fuel flow rate in kg/s when air-fuel ratio is 70 : 1
(iii) Thrust specific fuel consumption
(iv) Thermal efficiency of the plant when the combustion efficiency is 92% and calorific value of the fuel used is 42000 kJ/kg.
(v) Propulsive power                                            (vi) Propulsive efficiency
(vii) Overall efficiency.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Rate of air consumption,          \dot{m}_{a} = 60.2 kg/s
Enthalpy change for nozzle,      ∆h = 230 kJ/kg
Velocity coefficient,                       z = 0.96
Air-fuel ratio                                   = 70 : 1
Combustion efficiency,                η _{combustion} = 92%
Calorific value of fuel, C.V.           = 42000 kJ/kg

Aircraft velocity,                                               C_{a}   =   \frac{1000    ×     1000}{60   ×    60} = 277.8 m/s

(i) Exit velocity of jet, C_{j} :

C_{j}  =  z   \sqrt{2  ∆h  ×     1000} , where ∆h is in kJ

= 0.96  \sqrt{2    ×    230    ×     1000}  =  651 m/s.

i.e.,                  Exit velocity of jet                       = 651 m/s.

(ii) Fuel flow rate :

Rate of fuel consumption,                      \dot{m}_{f}   =   \frac{Rate   of   air    consumption }{Air-fuel   ratio}

\frac{60.2}{70} = 0.86 kg/s.

(iii) Thrust specific fuel consumption :
Thrust is the force produced due to change of momentum.
Thrust produced                                   = \dot{m}_{a}  (C_{j}   –  C_{a} )   ,  neglecting mass of fuel.

= 60.2 (651 – 277.8) = 22466.6 N.
∴          Thrust specific fuel consumption

\frac{Fuel   consumption }{Thrust}  =  \frac{0.86}{22466.6}

= 3.828 × 10^{–5} kg/N of thrust/s.

(iv) Thermal efficiency, η_{thermal} :

η_{thermal}  =  \frac{Work   output }{Heat   supplied}

\frac{Gain   in    kinetic   energy   per   kg   of   air}{Heat    supplied    by   fuel   per   kg   of   air }

\frac{(C_{j}²   –  C_{a}²  ) }{(  \frac{m_{f}}{m_{a}})  ×    C.V.    ×    η_{combustion }    ×      1000}

\frac{(651²     –     277.8² )}{2    ×    \frac{1}{70}    ×    42000  ×    0.92    ×      1000}   = 0.3139 or 31.39%

i.e.,               Thermal efficiency                 = 31.39%.

(v) Propulsive power :

Propulsive power                                            =    \dot{m}_{a}  ×    (\frac{(C_{j}²   –  C_{a}²  ) }{2})    =    \frac{60.2}{1000}  ×    ( \frac{(651²     –     277.8² )}{2})   kW

= 10433.5 kW.

(vi) Propulsive efficiency, η_{prop.}   :

η_{prop.}    =    \frac{Thrust   power }{Propulsive    power}  =    \frac{2  C_{a}}{C_{j}   +    C_{a}}                                   …[Eq.(18)]

\frac{2    ×   277.8}{651   +    277.8}  = 0.598 or 59.8%.

(vii) Overall efficiency, η_{0} :

η_{0}  =    \frac{Thrust    work }{Heat   supplied    by   fuel }  =    \frac{(C_{j}   –  C_{a}  )    C_{a}}{(  \frac{m_{f}}{m_{a}})  ×    C.V.    ×    η_{combustion }}                          …(22)

\frac{(651     –     277.8 )  ×    277.8}{\frac{1}{70}    ×    42000    ×    0.92    ×      1000}   = 0.1878   or    18.78%.

Related Answered Questions