Question 5.14: A vessel that operates at 800 °F is supported by an insulate...
A vessel that operates at 800 °F is supported by an insulated skirt. The thermal distribution in the skirt is shown in Figure 5.24a. If the top and bottom of the skirt are assumed to be fixed with respect to rotation, what is the maximum stress due to temperature gradient? \alpha=7 \times 10^{-6} in./in.- °F, \mu=0.3, E=30 \times 10^{6} psi.

Learn more on how we answer questions.
The equation for a linear temperature gradient is
T_{y}=T_{ t }+\frac{T_{ b }-T_{ t }}{l} xThe temperature change can be expressed as
T=\frac{T_{ b }-T_{ t }}{l} xand the circumferential stress due to ring action obtained from Eq. (5.30a) is
\sigma_{\theta}=\frac{-P r}{t}=-E \alpha T_{x} (5.30a)
\sigma_{\theta}=-E \alpha\left(\frac{T_{ b }-T_{ t }}{l}\right) x (1)
Eq. (5.30b) gives
\frac{ d ^{4} w}{ d x^{4}}+3 \beta^{4} w=\frac{E t \alpha T_{x}}{r D} (5.30b)
\frac{ d ^{4} w}{ d x^{4}}+4 \beta^{4} w=\frac{E t \alpha}{r D}\left(\frac{T_{ b }-T_{ t }}{l}\right) xA particular solution takes the form
w=c_{1} \frac{E t \alpha}{r D}\left(\frac{T_{ b }-T_{ t }}{l}\right) x+c_{2}which upon substituting into the differential equation gives
c_{1}=\frac{1}{4 \beta^{4}} and c_{2}=0
and w reduces to
w=r \alpha\left(\frac{T_{ b }-T_{ t }}{l}\right) xFrom Eq. (5.19),
N_{\theta}=\frac{-E t w}{r} (5.19)
\sigma_{\theta}=\frac{N_{\theta}}{t}=E \alpha\left(\frac{T_{ b }-T_{ t }}{l}\right) x (2)
Adding Eqs. (1) and (2) results in
\sigma_{\theta}=0which means that for a linear distribution, the thermal stress along the skirt is zero.
The slope due to axial gradient is given by
\theta=\frac{ d w}{ d x}=r \alpha\left(\frac{T_{ b }-T_{ t }}{l}\right)Because the ends are fixed against rotation, a moment must be applied at the ends to reduce \theta to zero as shown in Figure 5.24b. From Eq. (5.24),
\frac{ d ^{3} w}{ d x^{3}}=\frac{-1}{D}\left(2 \beta M_{0} D_{\beta x}-Q_{0} B_{\beta x}\right) (5.24)
r \alpha\left(\frac{T_{ b }-T_{ t }}{l}\right)=\frac{-M_{0}}{\beta D}or
M_{0}=-\beta D\left(\frac{\alpha r}{l}\right)\left(T_{ b }-T_{ t }\right)Since \beta=0.2142, D=2.747 \times 10^{6} ,
M_{0} = 742in.-lb∕in.
and
\sigma = 4450 psi.
