Question 7.13: A water main of 500 mm internal diameter and 20 mm thick is ...

A water main of 500 mm internal diameter and 20 mm thick is running full. The water main is of cast iron and is supported at two points 10 m apart. Find the maximum stress in the metal. The cast iron and water weigh 72000 N/m³ and 10000 N/m³ respectively.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Given :
Internal dia.,          D_i= 500  mm = 0.5  m
Thickness of pipe, t = 20 mm
∴ Outer dia.,     D_0 = D_i + 2 × t = 500 + 2 × 20 = 540  mm = 0.54  m
Weight density of cast iron = 72000 N/m³
Weight density of water = 10000 N/m³
Internal area of pipe       = \frac{\pi}{4}D_i^2=\frac{\pi}{4} \times 0.5^2 = 0.1960  m^2
This is also equal to the area of water section.

∴ Area of water section= 0.196 m²
Outer area of pipe = \frac{\pi}{4}D_0^2=\frac{\pi}{4}\times 0.54^2  m^2

∴ Area of pipe section = \frac{\pi}{4}D_0^2  –  \frac{\pi}{4}D_i^2 \\ \quad \quad \quad \quad \quad =\frac{\pi}{4}[D_0^2-D_i^2] = \frac{\pi}{4}[0.54^2-0.5^2]=0.0327  m^2

Moment of inertia of the pipe section about neutral axis,

I=\frac{\pi}{64}[D_0^4-D_i^4]=\frac{\pi}{64}[540^4-500^4]=1.105\times 10^9  mm^4

Let us now find the weight of pipe and weight of water for one metre length.
Weight of the pipe for one metre run

= Weight density of cast iron × Volume of pipe
= 72000 × [Area of pipe section × Length]
= 72000 × 0.0327 × 1                    (∵ Length = 1 m)
= 2354 N

Weight of the water for one metre run

= Weight density of water × Volume of water
= 10000 × (Area of water section × Length)
= 10000 × 0.196 × 1 = 1960 N

∴ Total weight on the pipe for one metre run

= 2354 + 1960 = 4314 N

Hence the above weight is the U.D.L. (uniformly distributed load) on the pipe. The maximum bending moment due to U.D.L. is w × L²/8, where w = Rate of U.D.L. = 4314 N per metre run.

∴ Maximum bending moment due to U.D.L.,

M=\frac{w\times L^2}{8}=\frac{4314\times 10^2}{8} \quad (∵  L=10  m) \\ = 53925  Nm = 53925 × 10^3  N mm

Now using          \frac{M}{I}=\frac{\sigma}{y}

∴                           \sigma=\frac{M}{I}\times y

The stress will be maximum, when y is maximum. But maximum value of

y=\frac{D_0}{2}=\frac{540}{2}=270  mm

∴           y_{\max}=270  mm

∴ Maximum stress, \sigma_{\max}=\frac{M}{I}\times y_{\max}=\frac{53925 \times 10^3}{1.105 \times 10^9}\times 270 \\  \quad \quad \quad \quad \quad \quad =\pmb{13.18  N/mm^2.}

7.17

Related Answered Questions