Question 10.13: A welding-neck flange with the same geometry as that mention...

A welding-neck flange with the same geometry as that mentioned in Example 10.9 except for the thickness is used with a full-face gasket. The design pressure is 320 psi, and the “soft” gasket is vegetable fiber with m =1.75 and y=1100. What is the minimum required thickness?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

1) Determine the lever arms of the inner and outer parts of the gasket:

h_{ G }=\frac{(C-B)(2 B+C)}{6(B+C)}

 

=\frac{(22.5-10.75)(2 \times 10.75+22.5)}{6(10.75+22.5)}

 

h_{ G }=2.5915 in.

 

h_{ G }^{\prime}=\frac{(A-C)(2 A+C)}{6(C+A)}

 

=\frac{(26.5-22.5)(2 \times 26.5+22.5)}{6(22.5+26.5)}

 

h_{ G }^{\prime}=1.0272 in.

 

2) Determine the gasket dimensions:

G=C-2 h_{ G }=22.5-2 \times 2.5915=17.317 \text { in. }

 

b=\frac{(C-B)}{4}=\frac{(22.5-10.75)}{4}=2.9375 in.

y = 1100      and     m = 1.75.

3) Determine the loads:

H=\frac{\pi}{4} G^{2} P=\frac{\pi}{4}(17.317)^{2}(320)=75,368

 

H_{ p } =2 b \pi G m P=2(2.9375) ×π(17.317)(1.75)(320) = 178,986

H_{ p }^{\prime}=\left(\frac{h_{ G }}{h_{ G }^{\prime}}\right) H_{ p }=\left(\frac{2.5915}{1.0272}\right)(178,986)=451,559

 

W_{ m 1}=H+H_{ p }+H_{ p }^{\prime}=75,368+178,986 +451,559 = 705,913

H_{ G y} = bπGy = (2.9375)π(17.317)(1100)

= 175,790

H_{ G y}^{\prime}=\left(\frac{h_{ g }}{h_{ G }^{\prime}}\right) H_{ Gy }=\frac{(2.5915)(175,790)}{(1.0272)}

= 443,497

W_{ m 2}=H_{ G y}+H_{ G y}^{\prime} =175,790+443,496=619,286.

4) Determine bolting requirements. A_{m} is the greater of W_{ m 1} / S_{ a } \text { or } W_{ m 2} / S_{ a } :

A_{ m }=36.76 in. ^{2}     based on W_{m1}

 

A_{ b }=36.8 in ^{2}     based on 16-2in. diameter bolts

W_{ a }=0.5\left(A_{ m }+A_{ b }\right) S_{ a } = 0.5(36.76 + 36.8) ×(19,200) = 706,176.

5) Determine the flange moments at operating condition. Flange loads:

H_{ D }=\frac{\pi}{4} B^{2} P=\frac{\pi}{4}(10.75)^{2}(320)=29,044

 

H_{ T }=H-H_{ D } = 75,368 − 29,044 = 46,324.

Lever arms:

h_{ D }=R+0.5 g_{1} = 2.5 + 0.5(3.375) = 4.1875in.

h_{ T }=0.5\left(R+g_{1}+h_{ G }\right)

= 0.5(2.5 + 3.375 + 2.5915)

= 4.2333in.

Flange moments:

M_{ D }=H_{ D } h_{ D } = (29,044)(4.1875) = 121,622

M_{ T }=H_{ T } h_{ T } = (46,324)(4.2333) = 196,104

M_{0}=M_{ D }+M_{ T } = 121,622 + 196,104

= 317,726.

6) Determine the flange moment at gasket seating condition. Flange load:

H_{ G }=W_{ a }-H=706,176-75,368=630,808

Lever arm:

h_{ G }^{\prime \prime}=\frac{h_{ G } h_{ G }^{\prime}}{h_{ G }+h_{ G }^{\prime}}=\frac{(2.5915)(1.0272)}{(2.5915)+(1.0272)}

= 0.7356in.

Flange moment:

M_{ g }=H_{ G } h_{ G }^{\prime \prime} = (630,808)(0.7356) = 464,022.

All flange geometry constants are the same as those mentioned in Example 10.9.

7) Calculate the flange stresses. Assume flange thickness t =2.03 in. This is set directly from the radial flange stress at the bolt circle, which is

S_{ R }^{ bc }=\frac{6 M_{ g }}{t^{2}(\pi C-N d)}=\frac{6(464,022)}{(2.03)^{2}(22.5 \pi-16 \times 2)}

 

S_{R}^{b c} = 17,464 psi < 17,500 psi (allowable stress).

Longitudinal hub stress:

L=\frac{t e+1}{T}+\frac{t^{3}}{d} = 1.0021 + 0.0407 = 1.0428

S_{ H }=\frac{f M_{ g }}{L g_{1}^{2} B}=\frac{1(464,022)}{(1.0428)(3.375)^{2}(10.75)}

 

S_{ H } = 3634 psi < 26,250 psi (allowable stress).

Radial flange stress:

S_{ R }=\frac{\left(\frac{4}{3} t e+1\right) M_{ g }}{L t^{2} B}=\frac{(1.4704)(464,022)}{(1.0428)(2.03)^{2}(10.72)}

 

S_{ R } = 14,770 psi < 17,500 psi (allowable stress).

Tangential flange stress:

S_{ T }=\frac{Y M_{ g }}{t^{2} B}-Z S_{ R }

 

=\frac{2.29(464,022)}{(2.03)^{2}(10.75)}-(1.39)(14,770)

 

S_{ T } = 3457 psi < 17,500 psi (allowable stress).

Related Answered Questions

Question: 10.4

Verified Answer:

The cylindrical-shell thickness t_{s}[/lat...