Question 8.5: After a Hohmann transfer from earth to Mars, calculate (a) t...

After a Hohmann transfer from earth to Mars, calculate

(a) the minimum delta-v required to place a spacecraft in orbit with a period of 7 h

(b) the periapsis radius

(c) the aiming radius

(d) the angle between periapsis and Mars’ velocity vector.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The following data are required from Tables A.1 and A.2:

\mu_{ sun }=1.327\left(10^{11}\right)  km ^3 / s ^2

\mu_{ Mars }=42,830  km ^3 / s ^2

R_{\text {earth }}=149.6\left(10^6\right)  km

R_{\text {Mars }}=227.9\left(10^6\right)  km

r_{\text {Mars }} = 3396 km

Table A.1 Astronomical data for the sun, the planets, and the moon

Object Radius
(km)
Mass (kg) Sidereal
rotation
period
Inclination of
equator to
orbit plane
Semimajor
axis of orbit
(km)
Orbit
eccentricity
Inclination of
orbit to the
ecliptic plane
Orbit
sidereal
period
Sun 696000 1.989 \times 10^{30} 25.38d 7.25°
Mercury 2440 330.2 \times 10^{21} 58.56d 0.01° 57.91 \times 10^{6} 0.2056 7.00° 87.97d
Venus 6052 4.869 \times 10^{24} 243d^{a} 177.4° 108.2 \times 10^{6} 0.0067 3.39° 224.7d
Earth 6378 5.974 \times 10^{24} 23.9345h 23.45° 149.6 times 10^{6} 0.0167 0.00° 365.256d
(Moon) 1737 73.48 \times 10^{21} 27.32d 6.68° 384.4 \times 10^{3} 0.0549 5.145° 27.322d
Mars 3396 641.9 \times 10^{21} 24.62h 25.19° 227.9 \times 10^{6} 0.0935 1.850° 1.881y
Jupiter 71,490 1.899 \times 10^{27} 9.925h 3.13° 778.6 \times 10^{6} 0.0489 1.304° 11.86y
Saturn 60,270 568.5 \times 10^{24} 10.66h 26.73° 1.433 \times 10^{9} 0.0565 2.485° 29.46y
Uranus 25,560 86.83 \times 10^{24} 17.24h^{a} 97.77° 2.872 \times 10^{9} 0.0457 0.772° 84.01y
Neptune 24,764 102.4 \times 10^{24} 16.11h 28.32° 4.495 \times 10^{9} 0.0113 1.769° 164.8y
(Pluto) 1187 13.03 \times 10^{21} 6.387d^{a} 122.5° 5.906 \times 10^{9} 0.2488 17.16° 247.9y
^aRetrograde

Table A.2 Gravitational parameter (μ) and sphere of influence (SOI) radius for the sun, the planets, and the moon

Celestial body μ (km³/s²) SOI radius (km)
Sun 132,712,440,018
Mercury 22,032 112,000
Venus 324,859 616,000
Earth 398,600 925,000
Earth’s moon 4905 66,100
Mars 42,828 577,000
Jupiter 126,686,534 48,200,000
Saturn 37,931,187 54,800,000
Uranus 5,793,939 51,800,000
Neptune 6,836,529 86,600,000
Pluto 871 3,080,000

(a) The hyperbolic excess speed is found using Eq. (8.4),

v_{\infty}=\Delta V_A=\sqrt{\frac{\mu_{\text {sun }}}{R_{\text {Mars }}}}\left(1-\sqrt{\frac{2 R_{\text {earth }}}{R_{\text {carth }}+R_{\text {Mars }}}}\right)=\sqrt{\frac{1.327\left(10^{11}\right)}{227.9\left(10^6\right)}}\left(1-\sqrt{\frac{2 \cdot 149.6\left(10^6\right)}{149.6\left(10^6\right)+227.9\left(10^6\right)}}\right)

\therefore v_{\infty} = 2.648 km/s

We can use Eq. (2.83) to express the semimajor axis a of the capture orbit in terms of its period T,

a=\left(\frac{T \sqrt{\mu_{ Mars }}}{2 \pi}\right)^{2 / 3}

Substituting T = 7 · 3600 s yields

a=\left(\frac{25,200 \sqrt{42,830}}{2 \pi}\right)^{2 / 3}=8832  km

From Eq. (2.73) we obtain

a=\frac{r_p}{1-e}

On substituting the optimal periapsis radius (Eq. 8.67) this becomes

a=\frac{2 \mu_{ Mars }}{v_{\infty}^2} \frac{1}{1+e}

from which

e=\frac{2 \mu_{ Mars }}{a v_{\infty}}-1=\frac{2 \cdot 42,830}{8832 \cdot 2.648^2}-1=0.3833

Thus, using Eq. (8.70), we find

\Delta v=v_{\infty} \sqrt{\frac{1-e}{2}}=2.648 \sqrt{\frac{1-03833}{2}}=1.470  km / s

(b) From Eq. (8.66), we obtain the periapse radius

r_p=\frac{2 \mu_{\text {Mars }}}{v_{\infty}^2} \frac{1-e}{1+e}=\frac{2 \cdot 42,830}{2.648^2} \frac{1-0.3833}{1+0.3833}=5447  km

(c) The aiming radius is given by Eq. (8.71),

\Delta=r_p \sqrt{\frac{2}{1-e}}=5447 \sqrt{\frac{2}{1-0.3833}}=9809  km

(d) Using Eq. (8.43), we get the angle to periapsis

\beta=\cos ^{-1}\left(\frac{1}{1+\frac{r_p v_{\infty}^2}{\mu_{ Mars }}}\right)=\cos ^{-1}\left(\frac{1}{1+\frac{5447 \cdot 2.648^2}{42,830}}\right)=58.09^{\circ}

Mars, the approach hyperbola, and the capture orbit are shown to scale in Fig. 8.17. The approach could also be made from the dark side of the planet instead of the sunlit side. The approach hyperbola and capture ellipse would be the mirror image of that shown, as is the case in Fig. 8.12.

90307.8.17
90307.8.12

Related Answered Questions

Question: 8.7

Verified Answer:

Step 1: According to Eq. (5.48), the Julian day nu...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...
Question: 8.2

Verified Answer:

From Tables A.1 and A.2 we have R_{\text {e...
Question: 8.1

Verified Answer:

In Table A.1 we find the orbital periods of earth ...
Question: 8.3

Verified Answer:

In Table A.1 we find m_{\text {earth }}=5.9...