Question 10.5: Air (ρ = 1.23 kg/m³ and ν = 1.5 × 10^-5 m²/s) is flowing ove...

Air (\rho=1.23 kg / m ^{3} \text { and } v=1.5 \times 10^{-5} m ^{2}/s) is flowing over a flat plate. The free stream speed is 15 m/s. At a distance of 1 m from the leading edge, calculate \delta \text { and } \tau_{w} for (a) completely laminar flow, and (b) completely turbulent flow for a 1/7th power law velocity profile.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Applying the results developed in Chapters 9 and 10, we can write for parabolic velocity profile (laminar flow)

 

\frac{\delta}{x}=\frac{5.48}{\sqrt{\operatorname{Re}_{x}}} \text { and } \tau_{w}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}

 

\operatorname{Re}_{x}=\frac{U x}{v}=\frac{15 \times 1}{1.5 \times 10^{-5}}=1.0 \times 10^{6}

 

\delta=\frac{5.48}{\sqrt{1.0 \times 10^{6}}} \times 1 m =5.48 mm

 

\tau_{w}=\left.\mu \frac{\partial u}{\partial y}\right|_{y=0}=\frac{\mu U_{\infty}}{\delta} \cdot \frac{ d }{ d \eta}\left[2 \eta-\eta^{2}\right]_{\eta=0}

 

\tau_{w}=\frac{2 \times 1.23 \times 1.5 \times 10^{-5} \times 15}{0.00548}=0.101 N / m ^{2}

 

For turbulent flow,

 

\frac{\delta}{x}=\frac{0.37}{\left(\operatorname{Re}_{x}\right)^{1 / 5}} (from Eq. 10.62)

 

\frac{\delta}{x}=0.37\left( Re _{x}\right)^{-1 / 5} (10.62)

 

or \delta=\frac{0.370}{\left(1.0 \times 10^{6}\right)^{1 / 5}} \times 1 m =23.34 mm

 

or \delta / x=0.0233

 

\tau_{w}=0.0225 \rho U_{\infty}^{2}\left(\frac{v}{U_{\infty} \delta}\right)^{1 / 4} (from Eq. 10.60)

 

\frac{\tau_{w}}{\rho U_{\infty}^{2}}=0.0225\left[\frac{v}{\delta U_{\infty}}\right]^{1 / 4} (10.60)

 

\tau_{w}=0.0225 \times 1.23 \times(15)^{2}\left(\frac{v}{U_{\infty} x} \cdot \frac{x}{\delta}\right)^{1 / 4}

 

or \tau_{w}=0.0225 \times 1.23 \times(15)^{2}\left[\frac{1}{1.0 \times 10^{6}} \times \frac{1}{0.0233}\right]^{1 / 4}

 

= 0.502 N / m ^{2}

 

Turbulent boundary layer has a larger shear stress than the laminar boundary layer.

Related Answered Questions