Question 31.6: Ammonia is to be absorbed from air at 293 K and 1.013 × 10^5...

Ammonia is to be absorbed from air at 293 K and 1.013 \times 10^5 \mathrm{~Pa} pressure in a countercurrent, packed tower, 0.5 m in diameter, using ammonia-free water as the absorbent. The inlet gas rate will be 0.2 m³/s and the inlet water rate will be 203 kg/s. Under these conditions, the overall capacity coefficient, K_Y, may be assumed to be 80 \frac{\text { mole }}{\mathrm{m}^3 \cdot \mathrm{s} \cdot \Delta Y_A}. The ammonia concentration will be reduced from 0.0825 to 0.003 mol fraction. The tower will be cooled, the operation thus taking place essentially at 293 K; the equilibrium data of example 3 may be used. Determine the length of the mass exchanger.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The concentrations of three of the streams were given; these may be expressed on a \mathrm{NH}_3 \text {-free } basis by

Y_{\mathrm{NH}_3, 1}=\frac{y_{\mathrm{NH}_3, 1}}{1-y_{\mathrm{NH}_3, 1}}=\frac{0.0825}{0.9175}=0.09

 

Y_{\mathrm{NH}_3, 2}=\frac{y_{\mathrm{NH}_3, 2}}{1-y_{\mathrm{NH}_3, 2}}=\frac{0.003}{0.997}=0.003

and

X_{\mathrm{NH}_3, 2}=0.0

The cross-sectional area of the tower is equal to \frac{\pi D^2}{4}=\frac{\pi(0.5 \mathrm{~m})^2}{4}=0.196 \mathrm{~m}^2. The gas enters the exchanger at plane 1, and its flow

G=\frac{V P}{R T} \cdot \frac{1}{\mathrm{~A}}=\frac{\left(0.20 \mathrm{~m}^3 / \mathrm{s}\right)\left(1.013 \times 10^5 \mathrm{~Pa}\right)}{\left(8.314 \frac{\mathrm{Pa} \cdot \mathrm{m}^3}{\mathrm{~mol} \cdot \mathrm{K}}\right)(293 \mathrm{~K})} \cdot \frac{1}{\left(0.196 \mathrm{~m}^2\right)}=42.4 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}

The \mathrm{NH}_3 \text {-free } gas flow rate is

G_s=G_1\left(1-y_{\mathrm{NH}_3, 1}\right)=42.4 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}(0.9175)=38.9 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}

The \mathrm{NH}_3 \text {-free } water flow rate is evaluated using the flow into the exchanger at plane 2.

L_s=(203 \mathrm{~g} / \mathrm{s})\left(\frac{\mathrm{mol}}{18 \mathrm{~g}}\right)\left(\frac{1}{0.196 \mathrm{~m}^2}\right)=57.5 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}

The liquid leaves the exchanger at plane 1; its concentration is evaluated, using the countercurrent material balance equation

G_s\left(Y_{\mathrm{NH}_3, 1}-Y_{\mathrm{NH}_3, 2}\right)=L_s\left(X_{\mathrm{NH}_3, 1}-X_{\mathrm{NH}_3, 2}\right)

 

38.9(0.09-0.003)=57.5\left(X_{\mathrm{NH}_3, 1}-0\right)

 

X_{\mathrm{NH}_3, 1}=0.059

The operating and equilibrium lines are shown in Figure 31.22.

As this is not a case in which the gas and liquid concentrations are dilute enough for us to assume straight equilibrium and operating lines on the plot of y vs. x, the height of the tower must be evaluated by the graphical integration procedure, using

z=\frac{G_S}{K_Y a} \int_{Y_{A_2}}^{Y_{A_1}} \frac{d Y_A}{Y_A-Y_A^*}

 

z=\frac{38.9 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}}{80 \frac{\mathrm{mol}}{\mathrm{m}^3 \cdot \mathrm{s} \cdot \Delta Y_A}} \int_{Y_{\mathrm{NH}_3, 2}}^{Y_{\mathrm{NH}_3, 1}} \frac{d Y_{\mathrm{NH}_3}}{Y_{\mathrm{NH}_3}-Y_{\mathrm{NH}_3}^*}

In Table 31.1, Y_{\mathrm{NH}_3} is the composition at a point on the operating line, and Y_{\mathrm{NH}_3}^* is the composition on the equilibrium line directly below the Y_{\mathrm{NH}_3} value. An example of these compositions is illustrated in Figure 31.21. The integral

\int_{Y_{\mathrm{NH}_3, 2}}^{Y_{\mathrm{NH}_3, 1}} \frac{d Y_{\mathrm{NH}_3}}{Y_{\mathrm{NH}_3}-Y_{\mathrm{NH}_3}^*}

is graphically evaluated in Figure 31.23.

Table 31.1     Example 3  gas compositions
Y_A Y_A^* Y_A-Y_A^* 1 /\left(Y_A-Y_A^*\right)
0.003 0 0.003 333.3
0.01 0.0056 0.0035 296
0.02 0.0153 0.0047 212.5
0.035 0.0275 0.0075 133.3
0.055 0.0425 0.0125 80.0
0.065 0.0503 0.0147 68.0
0.075 0.058 0.017 58.9
0.09 0.0683 0.0217 47.6

The area under the curve is the numerical value of the integral. The resulting length of the mass exchanger is

Z=\frac{38.9 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}}{80 \frac{\mathrm{mol}}{\mathrm{m}^3 \cdot \mathrm{s} \cdot \Delta Y_A}}(10.95)=5.32 \mathrm{~m}

The integral \int_{Y_{\mathrm{NH}_3, 2}}^{Y_{\mathrm{NH}_3, 1}} \frac{d Y_{\mathrm{NH}_3}}{Y_{\mathrm{NH}_3}-Y_{\mathrm{NH}_3}^*} can also be evaluated numerically using either a spreadsheet or a mathematical software program.With the values for G_s, L_s, y_{\mathrm{NH}_3 1} \text { and } X_{\mathrm{NH}_3 1} already determined, the operating line equation becomes

G_S\left(Y_{\mathrm{NH}_3, 1}-Y_{\mathrm{NH}_3, z}\right)=L_S\left(X_{\mathrm{NH}_3, 1}-X_{\mathrm{NH}_3, z}\right)

 

38.9 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}\left(0.09-Y_{\mathrm{NH}_3, z}\right)=57.7 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}\left(0.059-X_{\mathrm{NH}_3, z}\right)

which upon rearrangement yields

X_{\mathrm{NH}_3, z}=0.6765 \quad Y_{\mathrm{NH}_3, z}-0.0020

The equilibrium data for example 3, when fitted to a polynomial of the second order, can be represented by

Y_{\mathrm{NH}_3}^*=-2.6903  X_{\mathrm{NH}_3}^2+1.2953  X_{\mathrm{NH}_3}+0.0003

These two equations are used to develop the following table:

Y_{\mathrm{NH}_3} X_{\mathrm{NH}_3} Y_{\mathrm{NH}_3}^* Y-Y^* \frac{1}{Y-Y^*} \left(\frac{1}{Y-Y^*}\right)_{\mathrm{avg}} \Delta Y_{\mathrm{NH}_3} \left(\frac{1}{Y-Y^*}\right)_{\mathrm{avg}} \Delta Y_{\mathrm{NH}_3}
0.003 0 0 0.003 333.3
305.95 0.007 2.14
0.01 0.00476 0.06411 0.003589 278.6
236.95 0.01 2.37
0.02 0.01153 0.01488 0.00512 195.3
170.15 0.01 1.70
0.03 0.01830 0.02310 0.006897 145.0
128.5 0.01 1.28
0.04 0.02506 0.03107 0.008929 112.0
100.6 0.01 1.01
0.05 0.03182 0.03879 0.01121 89.2
81.03 0.01 0.81
0.06 0.03859 0.04628 0.01372 72.9
66.78 0.01 0.67
0.07 0.04536 0.05351 0.01648 60.66
55.98 0.01 0.56
0.08 0.05212 0.06050 0.01950 51.29
47.62 0.01 0.48
0.09 0.05889 0.06725 0.02275 43.96 Total area = 11.02

The integral \int_{Y_{\mathrm{NH}_3, 2}}^{Y_{\mathrm{NH}_3,}{ }^1} \frac{d Y_{\mathrm{NH}_3}}{Y_{\mathrm{NH}_3}-Y_{\mathrm{NH}_3}^*} equals 11.02 and the height of the mass exchanger is

Z=\frac{G_S}{K_Y a} \int_{Y_{\mathrm{NH}_3, 2}}^{Y_{\mathrm{NH}_3, 1}} \frac{d Y_{\mathrm{NH}_3}}{Y_{\mathrm{NH}_3}-Y_{\mathrm{NH}_3}^*}

 

Z=\frac{38.9 \frac{\mathrm{mol}}{\mathrm{m}^2 \cdot \mathrm{s}}}{80 \frac{\mathrm{mol}}{\mathrm{m}^3 \cdot \mathrm{s}}}(11.02)=5.36 \mathrm{~m}
f31.22
f31.21
f31.23

Related Answered Questions