Question 31.3: Ammonia is to be absorbed from an air mixture at 293 K and 1...

Ammonia is to be absorbed from an air mixture at 293 K and 1.013 \times 10^5 \mathrm{~Pa} pressure in a countercurrent packed tower, using water at 293 K as the absorbent. An inlet gas rate of 1.21 \times 10^{-2} \mathrm{~m}^3 / \mathrm{s} and an ammonia-free water rate of 9.46 \times 10^{-3} \mathrm{~kg} / \mathrm{s} will be used. If the ammonia, \mathrm{NH}_3, concentration is reduced from 3.52 to 1.29 % by volume, determine the ratio of \left(L_S / G_S\right)_{\text {actual }} /\left(L_S / G_S\right)_{\min }. Equilibrium data for the system at 293 K and .013 \times 10^5 .  \mathrm{Pa} are as follows:

\mathrm{X} \frac{\mathrm{kg}  \mathrm{mol}  \mathrm{NH}_3}{\mathrm{~kg}  \mathrm{~mol}  \mathrm{H}_2 \mathrm{O}} 0.0164 0.0252 0.0349 0.0455 0.0722
\mathrm{Y} \frac{\mathrm{kg}  \mathrm{mol}  \mathrm{NH}_3}{\mathrm{~kg} \mathrm{~mol}  \mathrm{H}_2 \mathrm{O}} 0.021 0.032 0.042 0.053 0.08
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The total moles of gas entering the tower per hour may be evaluated using the ideal gas law.

G_1 A=\text { moles entering gas } / \mathrm{s}=\frac{P \dot{V}}{R T}=\frac{\left(1.013 \times 10^5 \mathrm{~Pa}\right)\left(1.21 \times 10^2 \mathrm{~m}^2 / \mathrm{s}\right)}{\left(8.314 \frac{\mathrm{Pa} \cdot \mathrm{m}^3}{\mathrm{~mol} \cdot \mathrm{K}}\right)(293 \mathrm{~K})}

 

=0.503     \mathrm{~mol} / \mathrm{s}

The gas enters the tower with a mole fraction of ammonia, \mathrm{Y}_{A_1}, equal to 0.0352. Choosing a cross-sectional area for the tower of A m², we may evaluate the moles of G on a solute-free basis as

G_S=G_1\left(1-y_{A 1}\right)=\left(0.503 \frac{\mathrm{mol}}{\mathrm{s}}\right)\left(\frac{0.9648}{A \mathrm{~m}^2}\right)=\frac{0.483}{A} \frac{\mathrm{mol}}{\mathrm{s} \cdot \mathrm{m}^2}

The moles of phase L on a solute-free basis are

L_S=\left(9.46 \times 10^{-3} \frac{\mathrm{kg}}{\mathrm{s}}\right)\left(\frac{\mathrm{kg}  \mathrm{mol}}{18 \mathrm{~kg}}\right)\left(\frac{1}{A \mathrm{~m}^2}\right)=\frac{5.26 \times 10^{-4}}{A} \frac{\mathrm{kg}  \mathrm{mol}}{\mathrm{s} \cdot \mathrm{m}^2}=\frac{0.526}{A} \frac{\mathrm{mol}}{\mathrm{s} \cdot \mathrm{m}^2}

The ratio of the actual L_S to G_S is evaluated as

\left(\frac{L_S}{G_S}\right)_{\text {actual }}=\frac{0.526}{A} \frac{A}{0.483}=1.09 \frac{\text { mole } \mathrm{NH}_{3 \text {-free }} L \text { phase }}{\text { mole } \mathrm{NH}_{3 \text {-free }} G \text { phase }}

The composition of the known streams, G_1, G_2, and L_2 on a solute-free basis, are evaluated from the known mole fraction as

Y_{\mathrm{NH}_3, 1}=\frac{y_{\mathrm{NH}_3, 1}}{1-y_{\mathrm{NH}_3, 1}}=\frac{0.0352}{0.9648}=0.0365

 

Y_{\mathrm{NH}_3, 2}=\frac{y_{\mathrm{NH}_3, 2}}{1-y_{\mathrm{NH}_3, 2}}=\frac{0.0129}{0.9871}=0.0131

 

X_{\mathrm{NH}_3, 2}=\frac{x_{\mathrm{NH}_3, 2}}{1-x_{\mathrm{NH}_3, 2}}=0

The exiting composition, X_{\mathrm{NH}_3, 1}, can be evaluated by

G_S\left(Y_{A_1}-Y_{A_2}\right)=L_S\left(X_{A_1}-X_{A_2}\right)

 

\frac{0.483}{A}(0.0365-0.0131)=\frac{0.526}{A}\left(X_{A_1}-0\right)

 

X_{A_1}=0.0215

The actual and minimum operating lines are shown in Figure 31.12. The composition of the solution in equilibrium with Y_{\mathrm{NH}_3, 1}=0.0365 is obtained from the equilibrium curve as X_{\mathrm{NH}_{3, \text { equll }}}=0.0296. The slope of the minimum operating line is

\left(\frac{L_S}{G_S}\right)_{\text {minimum }}=\frac{\Delta Y}{\Delta X}=\frac{0.0365-0.0131}{0.0296-0}=0.79 \frac{\text { mole } \mathrm{NH}_{3 \text {-free }} \text { liquid phase }}{\text { mole } \mathrm{NH}_{3 \text {-free }} \text { gas phase }}

The desired ratio, \left(L_S / G_S\right)_{\text {actual }} /\left(L_S / G_S\right)_{\text {minimum }} is then a ratio of the two values, 1.09/0.79 or 1.38.

f31.12

Related Answered Questions