Question 6.17: An Armature-Controlled DC Motor Consider the dynamic system ...
An Armature-Controlled DC Motor
Consider the dynamic system shown in Figure 6.66, which represents an armature-controlled DC motor. Assume that the armature inductance is negligibly small, that is, L_{a}=0. The system dynamics can be expressed as
\begin{gathered} R_{\mathrm{a}} i_{\mathrm{a}}+K_{\mathrm{e}} \dot{\theta}_{\mathrm{m}}=v_{\mathrm{a}^{\prime}} \\ I_{\mathrm{m}} \ddot{\theta}_{\mathrm{m}}+B_{\mathrm{m}} \dot{\theta}_{\mathrm{m}}-K_{\mathrm{t}} i_{\mathrm{a}}=0 \end{gathered}
where the armature resistance is R_{\mathrm{a}}=0.5 \Omega, the back emf constant is K_{\mathrm{e}}=0.05 \mathrm{~V} \cdot \mathrm{s} / \mathrm{rad}, the torque constant is K_{\mathrm{t}}=0.05 \mathrm{~N} \cdot \mathrm{m} / \mathrm{A}, the mass moment of inertia of the motor is I_{\mathrm{m}}=0.00025 \mathrm{~kg} \cdot \mathrm{m}^{2}, the coefficient of the torsional viscous damping of the motor is B_{\mathrm{m}}=0.0001 \mathrm{~N} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad}, and the applied voltage is v_{\mathrm{a}}=10 \mathrm{~V}.
a. Denote \omega_{\mathrm{m}}=\dot{\theta}_{\mathrm{m}}. Following Figure 6.45 , build a Simulink block diagram using the given equations and find the armature current output i_{\mathrm{a}}(t) and the rotor speed \omega_{\mathrm{m}}(t).
b. Assume zero initial conditions, determine the transfer functions I_{\mathrm{a}}(s) / V_{\mathrm{a}}(s) and \Omega_{\mathrm{m}}(s) / V_{\mathrm{a}}(s). Build a Simulink block diagram using these two transfer functions and find the armature current output i_{\mathrm{a}}(t) and the rotor speed \omega_{\mathrm{m}}(t).
c. Choose \theta_{\mathrm{m}} and \dot{\theta}_{\mathrm{m}} as state variables and determine the state-space form of the system. Build a Simulink block diagram based on the state-space form and find the armature current output i_{\mathrm{a}}(t) and the rotor speed \omega_{\mathrm{m}}(t).
d. Build a Simscape model of the DC motor and find the armature current output i_{a}(t) and the rotor speed \omega_{\mathrm{m}}(t).


Learn more on how we answer questions.
a. This electromechanical system includes an armature circuit
R_{\mathrm{a}} i_{\mathrm{a}}=v_{\mathrm{a}}-\mathrm{e}_{\mathrm{b}}
a rotational system
I_{\mathrm{m}} \dot{\omega}_{\mathrm{m}}+B_{\mathrm{m}} \omega_{\mathrm{m}}=\tau_{\mathrm{m}}
and couplings between the electrical and mechanical subsystems
\mathrm{e}_{\mathrm{b}}=K_{\mathrm{e}} \omega_{\mathrm{m}} \quad \tau_{\mathrm{m}}=K_{\mathrm{t}} i_{\mathrm{a}}
Following Figure 6.45, we can construct a Simulink block diagram (see Figure 6.67), which shows the major components of the DC motor and their interconnections. The dynamics of the mechanical rotational system is represented using a Transfer Fen block. The armature resistance, torque constant, and back emf constant are represented using Gain blocks.
b. Taking Laplace transform of the two equations given and denoting s \Theta_{\mathrm{m}}(s)=\Omega_{\mathrm{m}}(s) provides
\begin{gathered} R_{\mathrm{a}} I_{\mathrm{a}}(s)+K_{\mathrm{e}} \Omega(s)=V_{\mathrm{a}}(s), \\ I_{\mathrm{m}} s \Omega_{\mathrm{m}}(s)+B_{\mathrm{m}} \Omega_{\mathrm{m}}(s)-K_{\mathrm{t}} I_{\mathrm{a}}(s)=0 . \end{gathered}
Using Cramer’s rule to solve for the transfer functions I_{\mathrm{a}}(s) / V_{\mathrm{a}}(s) and \Omega_{\mathrm{m}}(s) / V_{\mathrm{a}}(s) yields
\begin{gathered} \frac{I_{\mathrm{a}}(s)}{V_{\mathrm{a}}(s)}=\frac{I_{\mathrm{m}} s+B_{\mathrm{m}}}{R_{\mathrm{a}} I_{\mathrm{m}} s+R_{\mathrm{a}} B_{\mathrm{m}}+K_{\mathrm{t}} K_{\mathrm{e}}}, \\ \frac{\Omega_{\mathrm{m}}(s)}{V_{\mathrm{a}}(s)}=\frac{K_{\mathrm{t}}}{R_{\mathrm{a}} I_{\mathrm{m}} s+R_{\mathrm{a}} B_{\mathrm{m}}+K_{\mathrm{t}} K_{\mathrm{e}}}, \end{gathered}
both of which can easily be represented using a Transfer Fcn block (see Figure 6.68).
c. Let x_{1}=\theta_{\mathrm{m}}, x_{2}=\dot{\theta}_{\mathrm{m}^{\prime}} and u=v_{\mathrm{a}} and the state-variable equations are
\begin{gathered} \dot{x}_{1}=\dot{\theta}_{\mathrm{m}}=x_{2^{\prime}} \\ \dot{x}_{2}=\ddot{\theta}_{\mathrm{m}}=\frac{K_{\mathrm{t}}}{I_{\mathrm{m}}} i_{\mathrm{a}}-\frac{B_{\mathrm{m}}}{I_{\mathrm{m}}} \dot{\theta}_{\mathrm{m}}=\frac{K_{\mathrm{t}}}{I_{\mathrm{m}}}\left(\frac{v_{\mathrm{a}}-K_{\mathrm{e}} \dot{\theta}_{\mathrm{m}}}{R_{\mathrm{a}}}\right)-\frac{B_{\mathrm{m}}}{I_{\mathrm{m}}} \dot{\theta}_{\mathrm{m}} \\ =-\left(\frac{K_{\mathrm{t}} K_{\mathrm{e}}}{I_{\mathrm{m}} R_{\mathrm{a}}}+\frac{B_{\mathrm{m}}}{I_{\mathrm{m}}}\right) x_{2}+\frac{K_{\mathrm{t}}}{I_{\mathrm{m}} R_{\mathrm{a}}} u \end{gathered}
or in matrix form
\left\{\begin{array}{l} \dot{x}_{1} \\ \dot{x}_{2} \end{array}\right\}=\left[\begin{array}{cc} 0 & 1 \\ 0 & -\left(\frac{K_{\mathrm{t}} K_{\mathrm{e}}}{I_{\mathrm{m}} R_{\mathrm{a}}}+\frac{B_{\mathrm{m}}}{I_{\mathrm{m}}}\right) \end{array}\right]\left\{\begin{array}{l} x_{1} \\ x_{2} \end{array}\right\}+\left[\begin{array}{c} 0 \\ \frac{K_{\mathrm{t}}}{I_{\mathrm{m}} R_{\mathrm{a}}} \end{array}\right] u .
The output equations are
\begin{gathered} y_{1}=i_{\mathrm{a}}=\frac{v_{\mathrm{a}}-K_{\mathrm{e}} \dot{\theta}_{\mathrm{m}}}{R_{\mathrm{a}}}=-\frac{K_{\mathrm{e}}}{R_{\mathrm{a}}} x_{2}+\frac{1}{R_{\mathrm{a}}} u, \\ y_{2}=\dot{\theta}_{\mathrm{m}}=x_{2} \end{gathered}
or in matrix form
\left\{\begin{array}{l} y_{1} \\ y_{2} \end{array}\right\}=\left[\begin{array}{cc} 0 & -\frac{K_{\mathrm{e}}}{R_{\mathrm{a}}} \\ 0 & 1 \end{array}\right]\left\{\begin{array}{l} x_{1} \\ x_{2} \end{array}\right\}+\left[\begin{array}{c} \frac{1}{R_{\mathrm{a}}} \\ 0 \end{array}\right] u
The system can be represented using a State-Space block (see Figure 6.69) with A, B, C, D matrices defined above. A Demux block from the Simulink library of Signal Routing is used to split the output vector signal into two scalar signals i_{\mathrm{a}}(t) and \omega_{\mathrm{m}}(t).
d. The Simscape block diagram of the DC motor (see Figure 6.70) consists of elements from two domains, electrical and mechanical rotational. Note that each domain requires at least one reference block. As shown in Figure 6.70, both Electrical Reference and Mechanical Rotational Reference blocks are attached to the appropriate circuit.
Define all the parameters in MATLAB Workspace and run the Simulink or Simscape models. The result can be plotted as shown in Figures 6.71 and 6.72 .





