Question 12.5: An axisymmetric oblate satellite has principal moments of in...
An axisymmetric oblate satellite has principal moments of inertia I_{3}= 1,100 \mathrm{~kg}-\mathrm{m}^{2} (major axis) and I_{1}=I_{2}=700 \mathrm{~kg}-\mathrm{m}^{2} (minor axes). At time t=0, the satellite has the angular velocity vector (in body-fixed coordinates)
\omega_{0}=-0.2 \mathbf{u}_{1}+0.1 \mathbf{u}_{2}+8.3 \mathbf{u}_{3} \mathrm{rad} / \mathrm{s}
The satellite is equipped with a nutation damper mounted along the 3 axis. Determine the following:
a) The initial nutation angle.
b) The initial rotational kinetic energy.
c) The final angular velocity vector in body-frame coordinates.
d) The final rotational kinetic energy.
Neglect the effect of the mass-spring nutation damper on the satellite’s moments of inertia.
Learn more on how we answer questions.
a) First, let us compute the angular momentum vector using Eq. (12.18)
\mathbf{H}=\mathbf{I} \boldsymbol{\omega}_{0}=\left[\begin{array}{ccc} 700 & 0 & 0 \\ 0 & 700 & 0 \\ 0 & 0 & 1,100 \end{array}\right]\left[\begin{array}{c} -0.2 \\ 0.1 \\ 8.3 \end{array}\right]=-140 \mathbf{u}_{1}+70 \mathbf{u}_{2}+9,130 \mathbf{u}_{3} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}
Remember that the angular momentum vector \mathbf{H} computed above is expressed in the body frame at time t=0, and that the body axes are not inertially fixed due to the coning motion (however, \mathbf{H} is a fixed vector relative to an inertial frame).
Equation (12.57) shows that the nutation angle is
\theta=\tan ^{-1}\left(\frac{H_{12}}{H_{3}}\right)
where the component of \mathbf{H} in the 1-2 plane of the body frame is
\mathbf{H}_{12}=\mathbf{H}_{1}+\mathbf{H}_{2}=-140 \mathbf{u}_{1}+70 \mathbf{u}_{2}
The magnitude of \mathbf{H}_{12} is H_{12}=\sqrt{(-140)^{2}+70^{2}}=156.5248 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}. Therefore, the initial nutation angle is
\theta=\tan ^{-1}\left(\frac{H_{12}}{H_{3}}\right)=\tan ^{-1}\left(\frac{156.5248}{9,130}\right)=0.0171 \mathrm{rad}\left(=0.9822^{\circ}\right)
The oblate satellite is spinning with a very slight wobble at time t=0.
b) We can use Eq. (12.33) to compute the initial rotational kinetic energy
T_{\text {rot }, 0}=\frac{1}{2} \boldsymbol{\omega}_{0} \cdot \mathbf{I} \boldsymbol{\omega}_{0}=\frac{1}{2}\left[\begin{array}{lll} -0.2 & 0.1 & 8.3 \end{array}\right]\left[\begin{array}{c} -140 \\ 70 \\ 9,130 \end{array}\right]=37,907 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2}
where the 3 \times 1 column vector \mathbf{H}=\mathbf{I} \boldsymbol{\omega}_{0} was computed in (a). Because we are using principal axes, the rotational kinetic energy may be computed using
T_{\text {rot }, 0}=\frac{1}{2} I_{1} \omega_{1}^{2}+\frac{1}{2} I_{2} \omega_{2}^{2}+\frac{1}{2} I_{3} \omega_{3}^{2}=37,907 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2} \text { (same result) }
c) The nutation damper will eventually remove the wobble and realign the major axis (the 3 axis) with the angular momentum vector. Because the nutation angle eventually goes to zero, the final angular velocity vector (and \mathbf{H} ) will only contain a component along the 3 axis (remember that the 3 axis is a coordinate of the rotating body frame and not a coordinate of an inertial frame). Because \mathbf{H} is a constant vector, we can easily compute the final spin rate using
\omega_{f}=\frac{H}{I_{3}}=8.3012 \mathrm{rad} / \mathrm{s}
where the angular momentum magnitude is H=\|\mathbf{H}\|=9,131.34 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}. The final angular velocity vector expressed in body-fixed coordinates is
\omega_{f}=8.3012 \mathbf{u}_{3} \mathrm{rad} / \mathrm{s}
Note that the angular momentum is \mathbf{H}=\mathbf{I} \boldsymbol{\omega}_{f}=9,131.34 \mathbf{u}_{3} \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}, which has the same magnitude as \mathbf{H}=\mathbf{I} \boldsymbol{\omega}_{0} as computed in (a).
d) The final rotational kinetic energy is easy to compute because the satellite is in a pure spin about its major axis:
T_{\text {rot }, f}=\frac{1}{2} I_{3} \omega_{f}^{2}=37,900.64 \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{s}^{2}
Comparing this result to (b), we see that the nutation damper has dissipated a very small percentage of the initial rotational kinetic energy.