Question 8.7: An eccentrically loaded simply supported column is shown in ...

An eccentrically loaded simply supported column is shown in Figure 8.19. Find the value of the average compressive stress, P/A, above which the maximum bending moment will occur between support points A and B.

8.19
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us draw the bent column with the equivalent force system and its free-body diagram (Figure 8.20).

From Figure 8.20(a), we get

QL = Pε (taking moment about A)

and Figure 8.20(b) gives

M_x=P_y+Q x

Now,

E I \frac{ d ^2 y}{ d x^2}=-M_x=-P_y-Q x

or              \frac{ d ^2 y}{ d x^2}+\frac{P}{E I} y=-\frac{Q}{E I} x

or              \frac{ d ^2 y}{ d x^2}+\lambda^2 y=\lambda^2\left\lgroup -\frac{Q x}{P} \right\rgroup \quad\left(\text { taking } \lambda^2=P / E I\right)

Solving this we get,

y=A_1+\cos \lambda x+A_2 \sin \lambda x-\frac{Q}{P} x               (1)

The boundary conditions are
1. at x = 0, y = 0.
2. at x = L, y = 0.
Using condition (1) we get A_1 = 0 from Eq. (1). Using condition (2) we get from Eq. (1):

A_2=\frac{P \varepsilon}{P \sin \lambda L} \quad \text { (considering } Q L=P \varepsilon \text { ) }

or          A_2=\frac{\varepsilon}{\sin \lambda L}

so,              y=\varepsilon \frac{\sin \lambda x}{\sin \lambda L}-\frac{Q}{P} x            (2)

This is the equation of the deflection curve.
Now,

M_x=P_y+Q x

=P\left[\varepsilon \frac{\sin \lambda x}{\sin \lambda L}-\frac{Q}{P} x\right]+Q x

or              M_x=\left\lgroup \frac{P \varepsilon}{\sin \lambda L} \right\rgroup \sin \lambda x-Q x+Q x

=\frac{P \varepsilon}{\sin \lambda L} \cdot \sin \lambda x

\text { Now, } M_x=\left(M_x\right)_{\max } when sin λx = 1 or sin λx = sin π/2. The least value of λx that satisfies the relation is as follows:

\lambda x=\frac{\pi}{2}

or            x=\frac{\pi}{2 \lambda}

According to the problem,

\frac{\pi}{2 \lambda} \leq L \Rightarrow \frac{\pi}{2 L} \leq \lambda \quad \text { or } \quad \lambda^2 \geq \frac{\pi^2}{4 L^2}

or            \frac{P}{E I} \geq \frac{\pi^2}{4 L^2}

or              P \geq \frac{\pi^2 E I}{4 L^2}

So, the critical value of load is

P_{ Cr }=\frac{\pi^2 E I}{4 L^2}

The compressive stress is

\sigma_{\text {comp }}=\frac{\pi^2 E}{4(L / K)^2} \quad\left(\text { as } A K^2=I\right)

Thus, the required stress is

\frac{\pi^2 E}{4(L / K)^2}

8.20

Related Answered Questions