Question 8.7: An eccentrically loaded simply supported column is shown in ...
An eccentrically loaded simply supported column is shown in Figure 8.19. Find the value of the average compressive stress, P/A, above which the maximum bending moment will occur between support points A and B.

Learn more on how we answer questions.
Let us draw the bent column with the equivalent force system and its free-body diagram (Figure 8.20).
From Figure 8.20(a), we get
QL = Pε (taking moment about A)
and Figure 8.20(b) gives
M_x=P y+Q x
Now,
E I \frac{ d ^2 y}{ d x^2}=-M_x=-P y-Q x
or \frac{ d ^2 y}{ d x^2}+\frac{P}{E I} y=-\frac{Q}{E I} x
or \frac{ d ^2 y}{ d x^2}+\lambda^2 y=\lambda^2\left\lgroup -\frac{Q x}{P} \right\rgroup \quad\left(\text { taking } \lambda^2=P / E I\right)
Solving this we get,
y=A_1+\cos \lambda x+A_2 \sin \lambda x-\frac{Q}{P} x (1)
The boundary conditions are
1. at x = 0, y = 0.
2. at x = L, y = 0.
Using condition (1) we get A_1=0 from Eq. (1). Using condition (2) we get from Eq. (1):
\left.A_2=\frac{P \varepsilon}{P \sin \lambda L} \quad \text { (considering } Q L=P \varepsilon\right)
or A_2=\frac{\varepsilon}{\sin \lambda L}
so, y=\varepsilon \frac{\sin \lambda x}{\sin \lambda L}-\frac{Q}{P} x (2)
This is the equation of the deflection curve.
Now,
\begin{aligned} M_x & =P y+Q x \\ & =P\left[\varepsilon \frac{\sin \lambda x}{\sin \lambda L}-\frac{Q}{P} x\right]+Q x \end{aligned}
or
\begin{aligned} M_x & =\left\lgroup \frac{P \varepsilon}{\sin \lambda L} \right\rgroup \sin \lambda x-Q x+Q x \\ & =\frac{P \varepsilon}{\sin \lambda L} \cdot \sin \lambda x \end{aligned}
Now, M_x=\left(M_x\right)_{\max } \text { when } \sin \lambda x=1 \text { or } \sin \lambda x=\sin \pi / 2 . \text { The least value of } \lambda x that satisfies the relation is as follows:
\lambda x=\frac{\pi}{2}
or x=\frac{\pi}{2 \lambda}
According to the problem,
\frac{\pi}{2 \lambda} \leq L \Rightarrow \frac{\pi}{2 L} \leq \lambda \quad \text { or } \quad \lambda^2 \geq \frac{\pi^2}{4 L^2}
or \frac{P}{E I} \geq \frac{\pi^2}{4 L^2}
or P \geq \frac{\pi^2 E I}{4 L^2}
So, the critical value of load is
P_{ Cr }=\frac{\pi^2 E I}{4 L^2}
The compressive stress is
\sigma_{\text {comp }}=\frac{\pi^2 E}{4(L / K)^2} \quad\left(\text { as } A K^2=I\right)
Thus, the required stress is
\frac{\pi^2 E}{4(L / K)^2}
