Subscribe $4.99/month

Un-lock Verified Step-by-Step Experts Answers.

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

Our Website is free to use.
To help us grow, you can support our team with a Small Tip.

All the data tables that you may search for.

Need Help? We got you covered.

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Products

Find the Source, Textbook, Solution Manual that you are looking for in 1 click.

For Arabic Users, find a teacher/tutor in your City or country in the Middle East.

Need Help? We got you covered.

Chapter 10

Q. 10.2

An inductor constructed with an EI assembly EI42 (corresponding to IEC YEI 1-14) with M530-50A material, as described in Example 10.1, was constructed with g = 0.5 mm, core length l_{c} =8.4 cm, core cross-sectional area A_{g} = 2.072 cm^{2} and with N = 365 turns. Calculate the inductance L and the effective inductance L_{\mathrm{eff} } as a function of current for the range 0.25 to 4 A.

Step-by-Step

Verified Solution

For low values of current before the onset of saturation, the inductance is a function of the gap and is:

L_{max}= \frac{N^{2}}{R_{g}} = \frac{\mu _{0}N^{2}A_{g}}{g} = \frac{(4\pi\times10^{-7})(365)^{2}(2.072\times10^{-4})}{0.5\times10^{-3}} \times10^{3}= 69.4  mH

L is found from Equation 10.7:

L= \frac{N^{2}}{R_{g}}\frac{1}{\frac{\mu_{\mathrm{eff}}}{\mu_{r}} }   (10.7)

\mu _{\mathrm{eff}}= \frac{l_{c}}{g} = \frac{84}{0.5}= 168

And for i = 1.5 A:

a = H_{0} = 100 A/m

b = \frac{Ni}{g}+ H_{0}\mu _{\mathrm{eff}} -H_{m}= \frac{(365)(1.5)}{0.5\times10^{-3}} + (100)(168)-1.3\times10^{6}= -18.82\times10^{4 }  A/m

c = -H_{m}\mu _{\mathrm{eff} }= -(1.3\times10^{6})(168)= -2.184\times10^{8}  A/m

μ_{r}=\frac{-b+ \sqrt{b^{2}-4ac} }{2a} = \frac{(18.82\times10^{4})+\sqrt{(-18.82\times10^{4})^{2}-(4)(100)(-2.184\times10^{8})} }{(2)(100)} = 2693

L  = \frac{N^{2}}{R_{g}} \frac{1}{1+ \frac{\mu_{\mathrm{eff} }}{\mu_{r}} } = (69.4\times10^{-3})\frac{1}{1+ \frac{168}{2693} } = 65.3  mH

Leff is found from Equation 10.15:

L_{\mathrm{eff} }= L(i)+ i\frac{dL(i)}{di} = L(i)+ i\frac{dL}{d\mu_{r}}\frac{d\mu_{r}}{di}              (10.15)

\frac{dL}{d\mu_{r}}= L\frac{\mu_{\mathrm{eff} }/\mu^{2}_{r}}{1+ \mu_{\mathrm{eff} }/\mu_{r}} = (0.0653)\frac{168/(2693)^{2}}{1+ 168/2693} = 1.424\times10^{-6}H

 

\frac{d\mu_r}{di} = \left[-\frac{1}{2a}+ \frac{b}{2a\sqrt{b^{2}-4ac} } \right] \frac{N}{g}

= \left[ -\frac{1}{(2)(100)}+ \frac{-18.82\times10^{4}}{(2)(100)\sqrt{(18.82\times10^{4})^{2}-(4)(100)(-2.184\times10^{8})} } \right]\times \frac{365}{0.5\times 10^{-3}}

= -5.61 \times10^{3}  A^{-1}

 

L_{\mathrm{eff} }= L(i)+ i\frac{dL}{du_{r}}\frac{d\mu_{r}}{di} = 0.0653+ (1.5)(1.424\times10^{-6})(-5.61\times10^{3})= 53.3  mH

This process is repeated for the range of current and the plots of L and L_{\mathrm{eff} } are shown in Figure 10.4.

10.4