Question 9.19: An overhanging beam ABC of height h has a pin support at A a...

An overhanging beam ABC of height h has a pin support at A and a roller support at B. The beam is heated to a temperature T_{1} on the top and T_{2} on the bottom (see Fig. 9-47). Determine the equation of the deflection curve of the beam, and the deflection δ_{C} at end C.

9.19
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Use a four-step problem-solving approach. Combine steps as needed for an efficient solution.
1, 2. Conceptualize, Categorize: The displacement of this beam was investigated at selected points due to a concentrated load at C in Example 9-5, under a uniform load q in Example 9-9, and with uniform load q on AB and load P at C in Example 9-18. Now consider the effect of a temperature differential (T_{2} – T_{1}) on the deflection v(x) of the beam using Eq. (9-137).

\frac{d \theta}{d x}=\frac{\alpha\left(T_{2}-T_{1}\right)}{h}           (9-137)

\frac{d^{2} v}{d x^{2}}=\frac{\alpha\left(T_{2}-T_{1}\right)}{h}            (9-138, repeated)

3. Analyze: Integration results in two constants of integration, C_{1}  and  C_{2}, which must be determined using two independent bounday conditions:

\frac{d}{d x} v(x)=\frac{\alpha}{h}\left(T_{2}-T_{1}\right) x+C_{1}           (a)

v(x)=\frac{\alpha}{h}\left(T_{2}-T_{1}\right) \frac{x^{2}}{2}+C_{1} x+C_{2}            (b)

The boundary conditions are v(0) = 0 and v(L) = 0. So v(0) = 0, which gives C_{2} = 0.

Also, v(L) = 0, which leads to                           (c)

C_{1}=\frac{1}{L}\left[\frac{-\alpha L^{2}}{2 h}\left(T_{2}-T_{1}\right)\right]=-\left[\frac{L \alpha\left(T_{2}-T_{1}\right)}{2 h}\right]                    (d)

Substituting C_{1}  and  C_{2} into Eq. (b) results in the equation of the elastic curve of the beam due to temperature differential (T_{2} – T_{1}) as

v(x)=\frac{\alpha x\left(T_{2}-T_{1}\right)(x-L)}{2 h}             (e)

If x = L + a in Eq. (e), an expression for the deflection of the beam at C is

\delta_{C}=v(L+a)=\frac{\alpha(L+a)\left(T_{2}-T_{1}\right)(L+a-L)}{2 h}=\frac{\alpha\left(T_{2}-T_{1}\right) a(L+a)}{2 h}                   (f)

4. Finalize: Linear elastic behavior was assumed here and in earlier examples, so (if desired) the principle of superposition can be used to find the total deflection at C due to simultaneous application of all loads considered in Examples 9-5, 9-9, and 9-18 and for the temperature differential studied here.

Numerical example: If beam ABC is a steel, wide flange W 30 × 211 [see Table F-1(a)] with a length of L = 30 ft and with an overhang a = L / 2, compare the deflection at C due to self-weight (see Example 9-9; let q = 211 lb/ft) to the deflection at C due to temperature differential (T_{2} – T_{1}) = 5°F. From Table I-4, the coefficient of thermal expansion for structural steel is \alpha=6.5 \times 10^{-6} /{ }^{\circ} F. The modulus for steel is 30,000 ksi.

From Eq. (9-68), the deflection at C due to self-weight is

\delta_{C q}=\frac{q a}{24 E I_{z}}(a+L)\left(3 a^{2}+a L-L^{2}\right)             (g)
= \frac{\left(211 \frac{ lb }{ ft }+\frac{ ft }{12  in .}\right)(180  in .)}{24\left(30 \times 10^{6} \frac{ lb }{in^{2}}\right)\left(10,300  in ^{4}\right)}(180  in .+360  in).
\times\left[3(180 \text { in. })^{2}+180 \text { in. }(360 \text { in. })-(360 \text { in. })^{2}\right]

= 7.467 \times 10^{-3}  in.

where a = 15 ft = 180 in. and L = 30 ft = 360 in.

The deflection at C due to a temperature differential of only 5°F is from Eq. (f):

\delta_{C T}=\frac{\alpha\left(T_{2}-T_{1}\right) a(L+a)}{2 h}

= \frac{\left(6.5 \times 10^{-6}\right)(5)(180  in .)(360  in .+180  in .)}{2(30  in .)}=0.053  in .                (h)

The deflection at C due to a small temperature differential is seven times that due to self-weight.

Table F-1(a)
Properties of Wide-Flange Sections (W Shapes)—USCS Units (Abridged List)
Designation Weight
per
Foot
Area Depth Web
Thickness
Flange Axis 1–1 Axis 2-2
Width Thickness I S r I S r
lb in² in. in. in. in. \text{in}^{4} in³ in. \text{in}^{4} in³ in.
W 30 × 211 211 62.2 30.9 0.775 15.1 1.32 10300 665 12.9 757 100 3.49
W 30 × 132 132 38.9 30.3 0.615 10.5 1.00 5770 380 12.2 196 37.2 2.25
W 24 × 162 162 47.7 25.0 0.705 13.0 1.22 5170 414 10.4 443 68.4 3.05
W 24 × 94 94.0 27.7 24.3 0.515 9.07 0.875 2700 222 9.87 109 24.0 1.98
W 18 × 119 119 35.1 19.0 0.655 11.3 1.06 2190 231 7.90 253 44.9 2.69
W 18 × 71 71.0 20.8 18.5 0.495 7.64 0.810 1170 127 7.50 60.3 15.8 1.70
W 16 × 100 100 29.5 17.0 0.585 10.4 0.985 1490 175 7.10 186 35.7 2.51
W 16 × 77 77.0 22.6 16.5 0.455 10.3 0.760 1110 134 7.00 138 26.9 2.47
W 16 × 57 57.0 16.8 16.4 0.430 7.12 0.715 758 92.2 6.72 43.1 12.1 1.60
W 16 × 31 31.0 9.13 15.9 0.275 5.53 0.440 375 47.2 6.41 12.4 4.49 1.17
W 14 × 120 120 35.3 14.5 0.590 14.7 0.940 1380 190 6.24 495 67.5 3.74
W 14 × 82 82.0 24.0 14.3 0.510 10.1 0.855 881 123 6.05 148 29.3 2.48
W 14 × 53 53.0 15.6 13.9 0.370 8.06 0.660 541 77.8 5.89 57.7 14.3 1.92
W 14 × 26 26.0 7.69 13.9 0.255 5.03 0.420 245 35.3 5.65 8.91 3.55 1.08
W  12 × 87 87.0 25.6 12.5 0.515 12.1 0.810 740 118 5.38 241 39.7 3.07
W 12 × 50 50.0 14.6 12.2 0.370 8.08 0.640 391 64.2 5.18 56.3 13.9 1.96
W 12 × 35 35.0 10.3 12.5 0.300 6.56 0.520 285 45.6 5.25 24.5 7.47 1.54
W 12 × 14 14.0 4.16 11.9 0.200 3.97 0.225 88.6 14.9 4.62 2.36 1.19 0.753
W 10 × 60 60.0 17.6 10.2 0.420 10.1 0.680 341 66.7 4.39 116 23.0 2.57
W 10 × 45 45.0 13.3 10.1 0.350 8.02 0.620 248 49.1 4.32 53.4 13.3 2.01
W 10 × 30 30.0 8.84 10.5 0.300 5.81 0.510 170 32.4 4.38 16.7 5.75 1.37
W 10× 12 12.0 3.54 9.87 0.190 3.96 0.210 53.8 10.9 3.90 2.18 1.10 0.785
W 8 × 35 35.0 10.3 8.12 0.310 8.02 0.495 127 31.2 3.51 42.6 10.6 2.03
W 8 × 28 28.0 8.24 8.06 0.285 6.54 0.465 98.0 24.3 3.45 21.7 6.63 1.62
W 8 × 21 21.0 6.16 8.28 0.250 5.27 0.400 75.3 18.2 3.49 9,77 3.71 1.26
W 8 × 15 15.0 4.44 8.11 0.245 4.01 0.315 48.0 11.8 3.29 3.41 1.70 0.876

 

TABLE I-4
Coefficients of Thermal Expansion
Material Coefficient of
Thermal expansion α
10^{-6} /{ }^{\circ} F 10^{-6} /^{\circ} C
Aluminum alloys 13 23
Brass 10.6–11.8 19.1–21.2
Bronze 9.9–11.6 18–21
Cast iron 5.5–6.6 9.9–12
Concrete 4–8 7–14
Copper and copper alloys 9.2–9.8 16.6–17.6
Glass 3–6 5–11
Magnesium alloys 14.5–16.0 26.1–28.8
Monel (67% Ni, 30% Cu) 7.7 14
Nickel 7.2 13
Plastics

Nylon

Polyethylene

 

40–80

80–160

 

70–140

140–290

Rock 3-5 5-9
Rubber 70–110 130–200
Steel
High-strength
Stainless
Structural
5.5–9.9
8.0
9.6
6.5
10–18
14
17
12
Titanium alloys 4.5–6.0 8.1–11
Tungsten 2.4 4.3

Related Answered Questions