Question 11.1: Apply Lagrange’s equations (11.15) to derive the equations o...
Apply Lagrange’s equations (11.15) to derive the equations of unconstrained motion of a particle in cylindrical coordinates.
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_k}\right) – \frac{\partial T}{\partial q_k}=Q_k, (11.15)
Learn more on how we answer questions.
The three independent generalized coordinates and generalized velocity components for the unconstrained motion of a particle in terms of cylindrical coordinates are defined by
\left(q_1, q_2, q_3\right)=(r, \phi, z), \quad\left(\dot{q}_1, \dot{q}_2, \dot{q}_3\right)=(\dot{r}, \dot{\phi}, \dot{z}). (11.19a)
It should be noted that the generalized coordinates and velocities are not the respective physical scalar components of either the actual position vector \mathbf{x}=r \mathbf{e}_r + z \mathbf{e}_z, or the velocity vector \mathbf{v}=\dot{r} \mathbf{e}_r+r \dot{\phi} \mathbf{e}_\phi+\dot{z} \mathbf{e}_z in cylindrical coordinates. The kinetic energy function in cylindrical coordinates is given by
T=\frac{1}{2} m \mathbf{v} \cdot \mathbf{v}=\frac{1}{2} m\left(\dot{r}^2 + r^2 \dot{\phi}^2 + \dot{z}^2\right) (11.19b)
Hence , with (11.19a) and (11.15) in mind, we use (11.19b) to first derive
\begin{array}{r}\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{r}}\right)-\frac{\partial T}{\partial r}=\frac{d}{d t}(m \dot{r}) – m r \dot{\phi}^2=m\left(\ddot{r} – r \dot{\phi}^2\right), \\\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{\phi}}\right) – \frac{\partial T}{\partial \phi}=\frac{d}{d t}\left(m r^2 \dot{\phi}\right)=m \frac{d}{d t}\left(r^2 \dot{\phi}\right), \\ \frac{d}{d t}\left(\frac{\partial T}{\partial \dot{z}}\right) – \frac{\partial T}{\partial z}=\frac{d}{d t}(m \dot{z})=m \ddot{z} .\end{array} (11.19c)
To complete the formulation of the equations of motion from the Lagrange equations (11.15), we next consider the generalized forces in (11.15). The virtual work (11.17) done by the total force \mathbf{F}=F_r \mathbf{e}_r + F_\phi \mathbf{e}_\phi + F_z \mathbf{e}_z in the virtual displacement \delta \mathbf{x}=\delta r \mathbf{e}_r + r \delta \phi \mathbf{e}_\phi + \delta z \mathbf{e}_z is given by
\delta \mathscr{W}=\mathbf{F} \cdot \delta \mathbf{x} (11.17)
\delta \mathscr{W}=F_r \delta r+r F_\phi \delta \phi+F_z \delta z (11.19d)
By (11.18), the virtual work done by the generalized forces (Q_1, Q_2, Q_3) =(Q_r, Q_\phi, Q_z) acting over the generalized virtual displacements (\delta q_1, \delta q_2, \delta q_3) =(\delta r, \delta \phi , \delta z) is
\delta \mathscr{W}=Q_r \delta r+ Q_\phi \delta \phi+Q_z \delta z (11.19e)
Since there are no constraints, the virtual work relations in (11.19d) and (11.1ge) must be equal for all arbitrary virtual displacements \delta r, \delta \phi , \delta z, and hence the generalized force components are given by
Q_r=F_r, \quad Q_\phi=r F_\phi, \quad Q_z=F_z. (11.19f)
Notice that \left[Q_\phi\right]=[F L] has dimensional units of torque . We thus see that the generalized forces need not have dimensional units of force , as do Q_r and Q_z.
Use of the two sets of results (11.19c) and (11.9f) in the Lagrange equations (11.15) now yields the familiar equations of unconstrained motion for a particle in terms of its cylindrical coordinates:
m\left(\ddot{r}-r \dot{\phi}^2\right)=F_r, \quad \frac{m}{r} \frac{d}{d t}\left(r^2 \dot{\phi}\right)=F_\phi, \quad m \ddot{z}=F_z. (11.19g)
These agree with equations (6.4) based on Newton’s second law.