Question 9.5.2: Apply one iteration of the QR method to the matrix that was ...

Apply one iteration of the QR method to the matrix that was given in Example 1:

A=\left[\begin{array}{lll}3 & 1 & 0 \\1 & 3 & 1 \\0 & 1 & 3\end{array}\right].

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let A^{(1)}=A be the given matrix and P_{2} represent the rotation matrix determined in Example 1. We found, using the notation introduced in the QR method, that

\begin{aligned}A_{2}^{(1)}=P_{2} A^{(1)} &=\left[\begin{array}{ccc}\frac{3 \sqrt{10}}{10} & \frac{\sqrt{10}}{10} & 0 \\-\frac{\sqrt{10}}{10} & \frac{3 \sqrt{10}}{10} & 0 \\0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}3 & 1 & 0 \\1 & 3 & 1 \\0 & 1 & 3\end{array}\right]=\left[\begin{array}{ccc}\sqrt{10} & \frac{3}{5} \sqrt{10} & \frac{\sqrt{10}}{10} \\0 & \frac{4 \sqrt{10}}{5} & \frac{3 \sqrt{10}}{10} \\0 & 1 & 3\end{array}\right] \\& \equiv\left[\begin{array}{ccc}z_{1} & q_{1} & r_{1} \\0 & x_{2} & y_{2} \\0 & b_{3}^{(1)} & a_{3}^{(1)}\end{array}\right] .\end{aligned}

Continuing, we have

s_{3}=\frac{b_{3}^{(1)}}{\sqrt{x_{2}^{2}+\left(b_{3}^{(1)}\right)^{2}}}=0.36761 \quad \text { and } \quad c_{3}=\frac{x_{2}} {\sqrt{x_{2}^{2}+\left(b_{3}^{(1)}\right)^{2}}}=0.92998

so

\begin{aligned}R^{(1)} \equiv A_{3}^{(1)}=P_{3} A_{2}^{(1)} &=\left[\begin{array}{ccc}1 & 0 & 0 \\0 & 0.92998 & 0.36761 \\0 & -0.36761 & 0.92998\end{array}\right]\left[\begin{array}{ccc}\sqrt{10} & \frac{3}{5} \sqrt{10} & \frac{\sqrt{10}}{10} \\0 & \frac{4 \sqrt{10}}{5} & \frac{3 \sqrt{10}}{10} \\0 & 1 & 3\end{array}\right] \\&=\left[\begin{array}{ccc}\sqrt{10} & \frac{3}{5} \sqrt{10} & \frac{\sqrt{10}}{10} \\0 & 2.7203 & 1.9851 \\0 & 0 & 2.4412\end{array}\right],\end{aligned}

and

\begin{aligned}Q^{(1)}=P_{2}^{t} P_{3}^{t} &=\left[\begin{array}{ccc}\frac{3 \sqrt{10}}{10} & -\frac{\sqrt{10}}{10} & 0 \\\frac{\sqrt{10}}{10} & \frac{3 \sqrt{10}}{10} & 0 \\0 & 0 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 0 \\0 & 0.92998 & -0.36761 \\0 & 0.36761 & 0.92998\end{array}\right] \\&=\left[\begin{array}{ccc}0.94868 & -0.29409 & 0.11625 \\0.31623 & 0.88226 & -0.34874 \\0 & 0.36761 & 0.92998\end{array}\right] .\end{aligned}

As a consequence,

\begin{aligned}A^{(2)}=R^{(1)} Q^{(1)} &=\left[\begin{array}{ccccc}\sqrt{10} & \frac{3}{5} \sqrt{10} & \frac{\sqrt{10}}{10} \\0 & 2.7203 & 1.9851 \\0 & 0 & 2.4412\end{array}\right]\left[\begin{array}{ccc}0.94868 & -0.29409 & 0.11625 \\0.31623 & 0.88226 & -0.34874 \\0 & 0.36761 & 0.92998\end{array}\right] \\&=\left[\begin{array}{ccc}3.6 & 0.86024 & 0 \\0.86024 & 3.12973 & 0.89740 \\0 & 0.89740 & 2.27027\end{array}\right]\end{aligned}

The off-diagonal elements of A^{(2)} are smaller than those of A^{(1)} by about 14%, so we have a reduction but it is not substantial. To decrease to below 0.001 we would need to perform 13 iterations of the QR method. Doing this gives

A^{(13)}=\left[\begin{array}{ccc}4.4139 & 0.01941 & 0 \\0.01941 & 3.0003 & 0.00095 \\0 & 0.00095 & 1.5858\end{array}\right]

This would give an approximate eigenvalue of 1.5858 and the remaining eigenvalues could be approximated by considering the reduced matrix

\left[\begin{array}{cc}4.4139 & 0.01941 \\0.01941 & 3.0003\end{array}\right]

Related Answered Questions

Question: 9.6.2

Verified Answer:

We found in Example 1 that A has the singular valu...
Question: 9.6.1

Verified Answer:

We have A^{t}=\left[\begin{array}{lllll}1 &...