Question 11.1.2: Apply the Linear Shooting technique with N = 10 to the bound...

Apply the Linear Shooting technique with N = 10 to the boundary-value problem

y^{\prime \prime}=-\frac{2}{x} y^{\prime}+\frac{2}{x^{2}} y+\frac{\sin (\ln x)}{x^{2}}, \quad \text { for } 1 \leq x \leq 2, \text { with } y(1)=1 \text { and } y(2)=2,

and compare the results to those of the exact solution

y=c_{1} x+\frac{c_{2}}{x^{2}}-\frac{3}{10} \sin (\ln x)-\frac{1}{10} \cos (\ln x) ,

where

c_{2}=\frac{1}{70}[8-12 \sin (\ln 2)-4 \cos (\ln 2)] \approx-0.03920701320

and

c_{1}=\frac{11}{10}-c_{2} \approx 1.1392070132

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Applying Algorithm 11.1 to this problem requires approximating the solutions to the initial-value problems

y_{1}^{\prime \prime}=-\frac{2}{x} y_{1}^{\prime}+\frac{2}{x^{2}} y_{1}+\frac{\sin (\ln x)}{x^{2}}, \quad \text { for } 1 \leq x \leq 2 \text {, with } y_{1}(1)=1 \text { and } y_{1}^{\prime}(1)=0

and

y_{2}^{\prime \prime}=-\frac{2}{x} y_{2}^{\prime}+\frac{2}{x^{2}} y_{2}, \quad \text { for } 1 \leq x \leq 2, \text { with } y_{2}(1)=0 \text { and } y_{2}^{\prime}(1)=1 .

The results of the calculations, using Algorithm 11.1 with N = 10 and h = 0.1, are given in Table 11.1. The value listed as u_{1, i} \text { approximates } y_{1}\left(x_{i}\right) \text {, the value } v_{1, i} approximates y_{2}\left(x_{i}\right), \text { and } w_{i}  approximates

y\left(x_{i}\right)=y_{1}\left(x_{i}\right)+\frac{2-y_{1}(2)}{y_{2}(2)} y_{2}\left(x_{i}\right) .

 

Table 11.1

\begin{array}{llllcc}\hline x_{i} & u_{1, i} \approx y_{1}\left(x_{i}\right) & v_{1, i} \approx y_{2}\left(x_{i}\right) & w_{i} \approx y\left(x_{i}\right) & y\left(x_{i}\right) & \left|y\left(x_{i}\right)-w_{i}\right| \\\hline 1.0 & 1.00000000 & 0.00000000 & 1.00000000 & 1.00000000 & \\1.1 & 1.00896058 & 0.09117986 & 1.09262917 & 1.09262930 & 1.43 \times 10^{-7} \\1.2 & 1.03245472 & 0.16851175 & 1.18708471 & 1.18708484 & 1.34 \times 10^{-7} \\1.3 & 1.06674375 & 0.23608704 & 1.28338227 & 1.28338236 & 9.78 \times 10^{-8} \\1.4 & 1.10928795 & 0.29659067 & 1.38144589 & 1.38144595 & 6.02 \times 10^{-8} \\1.5 & 1.15830000 & 0.35184379 & 1.48115939 & 1.48115942 & 3.06 \times 10^{-8} \\1.6 & 1.21248372 & 0.40311695 & 1.58239245 & 1.58239246 & 1.08 \times 10^{-8} \\1.7 & 1.27087454 & 0.45131840 & 1.68501396 & 1.68501396 & 5.43 \times 10^{-10} \\1.8 & 1.33273851 & 0.49711137 & 1.78889854 & 1.78889853 & 5.05 \times 10^{-9} \\1.9 & 1.39750618 & 0.54098928 & 1.89392951 & 1.89392951 & 4.41 \times 10^{-9} \\2.0 & 1.46472815 & 0.58332538 & 2.00000000 & 2.00000000 & \\\hline\end{array}

Related Answered Questions