Question 11.2.1: Apply the Shooting method with Newton’s Method to the bounda...

Apply the Shooting method with Newton’s Method to the boundary-value problem

y^{\prime \prime}=\frac{1}{8}\left(32+2 x^{3}-y y^{\prime}\right), \quad \text { for } 1 \leq x \leq 3, \text { with } y(1)=17 \text { and } y(3)=\frac{43}{3}

Use N = 20, M = 10, and T O L=10^{-5} , and compare the results with the exact solution y(x)=x^{2}+16 / x .

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We need approximate solutions to the initial-value problems

y^{\prime \prime}=\frac{1}{8}\left(32+2 x^{3}-y y^{\prime}\right), \quad \text { for } 1 \leq x \leq 3, \text { with } y(1)=17 \text { and } y^{\prime}(1)=t_{k}

and

z^{\prime \prime}=\frac{\partial f}{\partial y} z+\frac{\partial f}{\partial y^{\prime}} z^{\prime}=-\frac{1}{8}\left(y^{\prime} z+y z^{\prime}\right), \quad \text { for } 1 \leq x \leq 3 \text {, with } z(1)=0 \text { and } z^{\prime}(1)=1,

at each step in the iteration. If the stopping technique in Algorithm 11.2 requires

\left|w_{1, N}\left(t_{k}\right)-y(3)\right| \leq 10^{-5} ,

then we need four iterations and t_{4}=-14.000203 . The results obtained for this value of t are shown in Table 11.2.

 

Table 11.2

\begin{array}{lccl}\hline x_{i} & w_{1, i} & y\left(x_{i}\right) & \left|w_{1, i}-y\left(x_{i}\right)\right| \\\hline 1.0 & 17.000000 & 17.000000 & \\1.1 & 15.755495 & 15.755455 & 4.06 \times 10^{-5} \\1.2 & 14.773389 & 14.773333 & 5.60 \times 10^{-5} \\1.3 & 13.997752 & 13.997692 & 5.94 \times 10^{-5} \\1.4 & 13.388629 & 13.388571 & 5.71 \times 10^{-5} \\1.5 & 12.916719 & 12.916667 & 5.23 \times 10^{-5} \\1.6 & 12.560046 & 12.560000 & 4.64 \times 10^{-5} \\1.7 & 12.301805 & 12.301765 & 4.02 \times 10^{-5} \\1.8 & 12.128923 & 12.128889 & 3.14 \times 10^{-5} \\1.9 & 12.031081 & 12.031053 & 2.84 \times 10^{-5} \\2.0 & 12.000023 & 12.000000 & 2.32 \times 10^{-5} \\2.1 & 12.029066 & 12.029048 & 1.84 \times 10^{-5} \\2.2 & 12.112741 & 12.112727 & 1.40 \times 10^{-5} \\2.3 & 12.246532 & 12.246522 & 1.01 \times 10^{-5} \\2.4 & 12.426673 & 12.426667 & 6.68 \times 10^{-6} \\2.5 & 12.650004 & 12.650000 & 3.61 \times 10^{-6} \\2.6 & 12.913847 & 12.913845 & 9.17 \times 10^{-7} \\2.7 & 13.215924 & 13.215926 & 1.43 \times 10^{-6} \\2.8 & 13.554282 & 13.554286 & 3.46 \times 10^{-6} \\2.9 & 13.927236 & 13.927241 & 5.21 \times 10^{-6} \\3.0 & 14.333327 & 14.333333 & 6.69 \times 10^{-6} \\\hline\end{array}

Related Answered Questions