Question 10.14: As part of the product development process for a new pump, t...

As part of the product development process for a new pump, the designer has instrumented a critical area of the housing with a rectangular strain-gage rosette like that shown in Figure 10–48(a). Gage number 1 is aligned with the horizontal centerline of the pump inlet passage. During the test under high-capacity operating conditions, the following readings were taken for the strains from the three arms of the gage: ε_{1} = 950 × 10^{−6}  mm/mm  ε_{2} = −375 × 10^{−6}  mm/mm,    ε_{3} = 525 × 10^{−6}   mm/mm . The material for the pump housing is aluminum 2014-T6. Compute the maximum principal stress, the minimum principal stress,and the maximum shear stress at the location where the rosette is mounted.

143801 10-48 a
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Objective     Compute \sigma_{max}, \sigma_{min},  and  \tau_{max}.

Given           Strain readings from a 0° , 45° , 90° strain-gage rosette

ε_{1} = 950 × 10^{−6}  mm/mm

ε_{2} = −375 × 10^{−6}  mm/mm,

ε_{3} = 525 × 10^{−6}   mm/mm

Aluminum 2014-T6: E = 73.1 \times 10^{9} N/m²; s_{y} = 414 \times 10^{6} N/m²  (Appendix A–14)  v = 0.33   (Table 2–1)

A–14  Typical properties of aluminum alloys .^{a}
Ultimate strength, s_{u} Yield strength, s_{y} Shear strength, s_{us}
Alloy and temper ksi MPa ksi MPa percent elongation ksi MPa
Alloys in wrought form
1100-H12 16 110 15 103 25 10 69
1100-H18 24 165 22 152 15 13 90
2014-0 27 186 14 97 18 18 124
2014-T4 62 427 42 290 20 38 262
2014-T6 70 483 60 414 13 42 290
3003-0 16 110 6 41 40 11 76
3003-H12 19 131 18 124 20 12 83
3003-H18 29 200 27 186 10 16 110
5154-0 35 241 17 117 27 22 152
5154-H32 39 269 30 207 15 22 152
5154-H38 48 331 39 269 10 28 193
6061-0 18 124 8 55 30 12 83
6061-T4 35 241 21 145 25 24 165
6061-T6 45 310 40 276 17 30 207
7075-0 33 228 15 103 16 22 152
7075-T6 83 572 73 503 11 48 331
Casting alloys—permanent mold castings
204.0-T4 48 331 29 200 8
206.0-T6 65 445 59 405 6
356.0-T6 41 283 30 207 10

 

TABLE 2–1  Approximate values of Poisson’s ratio, v.
Concrete 0.10-0.25 Aluminum (most alloys) 0.33
Glass 0.24 Brass 0.33
Ductile iron 0.27 Copper 0.33
Gray cast iron 0.21 Zinc 0.33
Plastics 0.20-0.40 Phosphor bronze 0.35
Carbon and alloy steel 0.29 Magnesium 0.35
Stainless steel (18-8) 0.30 Lead 0.43
Titanium 0.30 Rubber, elastomers ∼0.50

Analysis     Use the Procedure for Analyzing the Data from a Strain-Gage Rosette

Results       Steps 1 though 4 have already been completed

Step 5. In using Equations (10–22) through (10–24), we will show only the whole number part of the strain values. The unit is then microstrains, με.

The maximum principal strain is

\epsilon _{max} = \frac{\left(\epsilon _{1} + \epsilon _{3}\right) }{2} + \frac{\sqrt{\left(\epsilon _{1} – \epsilon _{2}\right)^{2} + \left(\epsilon _{2} – \epsilon _{3}\right)^{2}} }{\sqrt{2} } 

\epsilon _{max} = \frac{(950 + 525)}{2} + \frac{\sqrt{\left[(950-(-375))\right]^{2} + \left(-375 – 525\right)^{2}} }{\sqrt{2} } = 1870  \mu \epsilon 

The minimum principal strain is

\epsilon _{min} = \frac{\left(\epsilon _{1} + \epsilon _{3}\right) }{2} – \frac{\sqrt{\left(\epsilon _{1} – \epsilon _{2}\right)^{2} – \left(\epsilon _{2} – \epsilon _{3}\right)^{2}} }{\sqrt{2} } 

\epsilon _{min} = \frac{(950 + 525)}{2} – \frac{\sqrt{\left[(950-(-375))\right]^{2} + \left(-375 – 525\right)^{2}} }{\sqrt{2} } = -395  \mu \epsilon 

The angle from gage number 1 to the nearest principal strain axis is

\beta = \frac{1}{2} \tan^{-1} \left[ \frac{(\epsilon _{2}-\epsilon _{3})-(\epsilon _{1}-\epsilon _{2})}{(\epsilon _{1}-\epsilon _{3})} \right] 

\beta = \frac{1}{2} \tan^{-1} \left[ \frac{(-375 -525)-[950 -(-375)]}{(950 – 525)} \right]  = -39.6°

Step 6. The maximum principal stress is found from Equation (10–28):

\sigma _{max} = \frac{E}{1-v^{2}}(\epsilon _{max}+v\epsilon _{min})

\sigma _{max} = \frac{73.1 \times 10^{9}  Pa}{1-(0.33)^{2}}[1870 + 0.33(-395)(10^{-6})] = 143 MPa

The minimum principal stress is found from Equation (10–29):

\sigma _{max} = \frac{E}{1-v^{2}}(\epsilon _{min}+v\epsilon _{max})

\sigma _{max} = \frac{73.1 \times 10^{9}  Pa}{1-(0.33)^{2}}[-395 + 0.33(1870)(10^{-6})] = 18.2 MPa

Step 7. The maximum shearing strain is found from Equation (10–30):

\gamma_{max} = |(\epsilon _{max}-\epsilon_{min}) = |1870 – (-395)| = 2265 \times 10^{-6}   rad

Step 8. The maximum shearing stress in the plane of the initial element is found from Equation (10–32):

\tau_{max} = \frac{E \gamma_{max}}{2(1+v)} = \frac{(73.1 \times 10^{9} pa)(2265 \times 10^{-6})}{2(1+0.33)} = 62.3 MPa

 

Step 9. We note that both the maximum principal stress and the minimum principal stress are positive or tensile. Therefore, we must draw a supplemental Mohr’s circle to determine the true maximum shearing strain. See Figure 10–50. The circle is simply drawn by plotting both principal stresses on the horizontal axis and drawing the circle to include both. The supplementary circle is drawn through \sigma_{max} and the origin of the axes because that represents a zero stress perpendicular to the plane of the initial stress element. The true maximum shearing stress is equal to the radius of this circle, found from

\tau_{max} = ( \sigma_{max} – 0)/2 = (143  MPa)/2 = 71.5 MPa

Summary   The final results are

\sigma_{max} = 143 MPa    \sigma_{min} = 18.2 MPa  in the plane of the initial element

True \sigma_{max} = 0 perpendicular to the plane of the initial element

\tau_{max} = 71.5 MPa

143801 10-50

Related Answered Questions

Question: 10.5

Verified Answer:

The 16-step Procedure for Drawing Mohr’s Circle is...