Question 10.14: As part of the product development process for a new pump, t...
As part of the product development process for a new pump, the designer has instrumented a critical area of the housing with a rectangular strain-gage rosette like that shown in Figure 10–48(a). Gage number 1 is aligned with the horizontal centerline of the pump inlet passage. During the test under high-capacity operating conditions, the following readings were taken for the strains from the three arms of the gage: ε_{1} = 950 × 10^{−6} mm/mm ε_{2} = −375 × 10^{−6} mm/mm, ε_{3} = 525 × 10^{−6} mm/mm . The material for the pump housing is aluminum 2014-T6. Compute the maximum principal stress, the minimum principal stress,and the maximum shear stress at the location where the rosette is mounted.

Learn more on how we answer questions.
Objective Compute \sigma_{max}, \sigma_{min}, and \tau_{max}.
Given Strain readings from a 0° , 45° , 90° strain-gage rosette
ε_{1} = 950 × 10^{−6} mm/mm
ε_{2} = −375 × 10^{−6} mm/mm,
ε_{3} = 525 × 10^{−6} mm/mm
Aluminum 2014-T6: E = 73.1 \times 10^{9} N/m²; s_{y} = 414 \times 10^{6} N/m² (Appendix A–14) v = 0.33 (Table 2–1)
A–14 Typical properties of aluminum alloys .^{a} | |||||||
Ultimate strength, s_{u} | Yield strength, s_{y} | Shear strength, s_{us} | |||||
Alloy and temper | ksi | MPa | ksi | MPa | percent elongation | ksi | MPa |
Alloys in wrought form | |||||||
1100-H12 | 16 | 110 | 15 | 103 | 25 | 10 | 69 |
1100-H18 | 24 | 165 | 22 | 152 | 15 | 13 | 90 |
2014-0 | 27 | 186 | 14 | 97 | 18 | 18 | 124 |
2014-T4 | 62 | 427 | 42 | 290 | 20 | 38 | 262 |
2014-T6 | 70 | 483 | 60 | 414 | 13 | 42 | 290 |
3003-0 | 16 | 110 | 6 | 41 | 40 | 11 | 76 |
3003-H12 | 19 | 131 | 18 | 124 | 20 | 12 | 83 |
3003-H18 | 29 | 200 | 27 | 186 | 10 | 16 | 110 |
5154-0 | 35 | 241 | 17 | 117 | 27 | 22 | 152 |
5154-H32 | 39 | 269 | 30 | 207 | 15 | 22 | 152 |
5154-H38 | 48 | 331 | 39 | 269 | 10 | 28 | 193 |
6061-0 | 18 | 124 | 8 | 55 | 30 | 12 | 83 |
6061-T4 | 35 | 241 | 21 | 145 | 25 | 24 | 165 |
6061-T6 | 45 | 310 | 40 | 276 | 17 | 30 | 207 |
7075-0 | 33 | 228 | 15 | 103 | 16 | 22 | 152 |
7075-T6 | 83 | 572 | 73 | 503 | 11 | 48 | 331 |
Casting alloys—permanent mold castings | |||||||
204.0-T4 | 48 | 331 | 29 | 200 | 8 | – | – |
206.0-T6 | 65 | 445 | 59 | 405 | 6 | – | – |
356.0-T6 | 41 | 283 | 30 | 207 | 10 | – | – |
TABLE 2–1 Approximate values of Poisson’s ratio, v. | |||
Concrete | 0.10-0.25 | Aluminum (most alloys) | 0.33 |
Glass | 0.24 | Brass | 0.33 |
Ductile iron | 0.27 | Copper | 0.33 |
Gray cast iron | 0.21 | Zinc | 0.33 |
Plastics | 0.20-0.40 | Phosphor bronze | 0.35 |
Carbon and alloy steel | 0.29 | Magnesium | 0.35 |
Stainless steel (18-8) | 0.30 | Lead | 0.43 |
Titanium | 0.30 | Rubber, elastomers | ∼0.50 |
Analysis Use the Procedure for Analyzing the Data from a Strain-Gage Rosette
Results Steps 1 though 4 have already been completed
Step 5. In using Equations (10–22) through (10–24), we will show only the whole number part of the strain values. The unit is then microstrains, με.
The maximum principal strain is
\epsilon _{max} = \frac{\left(\epsilon _{1} + \epsilon _{3}\right) }{2} + \frac{\sqrt{\left(\epsilon _{1} – \epsilon _{2}\right)^{2} + \left(\epsilon _{2} – \epsilon _{3}\right)^{2}} }{\sqrt{2} }
\epsilon _{max} = \frac{(950 + 525)}{2} + \frac{\sqrt{\left[(950-(-375))\right]^{2} + \left(-375 – 525\right)^{2}} }{\sqrt{2} } = 1870 \mu \epsilon
The minimum principal strain is
\epsilon _{min} = \frac{\left(\epsilon _{1} + \epsilon _{3}\right) }{2} – \frac{\sqrt{\left(\epsilon _{1} – \epsilon _{2}\right)^{2} – \left(\epsilon _{2} – \epsilon _{3}\right)^{2}} }{\sqrt{2} }
\epsilon _{min} = \frac{(950 + 525)}{2} – \frac{\sqrt{\left[(950-(-375))\right]^{2} + \left(-375 – 525\right)^{2}} }{\sqrt{2} } = -395 \mu \epsilon
The angle from gage number 1 to the nearest principal strain axis is
\beta = \frac{1}{2} \tan^{-1} \left[ \frac{(\epsilon _{2}-\epsilon _{3})-(\epsilon _{1}-\epsilon _{2})}{(\epsilon _{1}-\epsilon _{3})} \right]
\beta = \frac{1}{2} \tan^{-1} \left[ \frac{(-375 -525)-[950 -(-375)]}{(950 – 525)} \right] = -39.6°
Step 6. The maximum principal stress is found from Equation (10–28):
\sigma _{max} = \frac{E}{1-v^{2}}(\epsilon _{max}+v\epsilon _{min})
\sigma _{max} = \frac{73.1 \times 10^{9} Pa}{1-(0.33)^{2}}[1870 + 0.33(-395)(10^{-6})] = 143 MPa
The minimum principal stress is found from Equation (10–29):
\sigma _{max} = \frac{E}{1-v^{2}}(\epsilon _{min}+v\epsilon _{max})
\sigma _{max} = \frac{73.1 \times 10^{9} Pa}{1-(0.33)^{2}}[-395 + 0.33(1870)(10^{-6})] = 18.2 MPa
Step 7. The maximum shearing strain is found from Equation (10–30):
\gamma_{max} = |(\epsilon _{max}-\epsilon_{min}) = |1870 – (-395)| = 2265 \times 10^{-6} rad
Step 8. The maximum shearing stress in the plane of the initial element is found from Equation (10–32):
\tau_{max} = \frac{E \gamma_{max}}{2(1+v)} = \frac{(73.1 \times 10^{9} pa)(2265 \times 10^{-6})}{2(1+0.33)} = 62.3 MPa
Step 9. We note that both the maximum principal stress and the minimum principal stress are positive or tensile. Therefore, we must draw a supplemental Mohr’s circle to determine the true maximum shearing strain. See Figure 10–50. The circle is simply drawn by plotting both principal stresses on the horizontal axis and drawing the circle to include both. The supplementary circle is drawn through \sigma_{max} and the origin of the axes because that represents a zero stress perpendicular to the plane of the initial stress element. The true maximum shearing stress is equal to the radius of this circle, found from
\tau_{max} = ( \sigma_{max} – 0)/2 = (143 MPa)/2 = 71.5 MPa
Summary The final results are
\sigma_{max} = 143 MPa \sigma_{min} = 18.2 MPa in the plane of the initial element
True \sigma_{max} = 0 perpendicular to the plane of the initial element
\tau_{max} = 71.5 MPa
