Question 16.15: Aspirin (acetylsalicylic acid, HC9H7O4) is a weak acid. It i...

Aspirin (acetylsalicylic acid, \text{HC}_9\text{H}_7\text{O}_4) is a weak acid. It ionizes in water according to the equation

\text{HC}_9\text{H}_7\text{O}_4(aq) + \text{H}_2\text{O}(l) \rightleftarrows \text{H}_3\text{O}^+(aq) + \text{C}_9\text{H}_7\text{O}_4^– (aq)

A 0.10-M aqueous solution of aspirin has a \text{pH} of 2.27 at 25°\text{C}. Determine the K_a of aspirin.

Strategy Determine the hydronium ion concentration from the \text{pH}. Use the hydronium ion concentration to determine the equilibrium concentrations of the other species, and plug the equilibrium concentrations into the equilibrium expression to evaluate K_a.

Setup Using Equation 16.3, we have

[\text{H}_3\text{O}^+] = 10^{–\text{pH}}            Equation 16.3

[\text{H}_3\text{O}^+] = 10^{–2.27} = 5.37 × 10^{–3}  M

To calculate K_a , though, we also need the equilibrium concentrations of \text{C}_9\text{H}_7\text{O}_4^– and \text{HC}_9\text{H}_7\text{O}_4. The stoichiometry of the reaction tells us that [\text{C}_9\text{H}_7\text{O}_4^–] = [\text{H}_3\text{O}^+]. Furthermore, the amount of aspirin that has ionized is equal to the amount of hydronium ion in solution. Therefore, the equilibrium concentration of aspirin is (0.10 − 5.37 × 10^{–3} )  M = 0.095   M.

                                                           \text{HC}_9\text{H}_7\text{O}_4(aq) + \text{H}_2\text{O}(l) \rightleftarrows \text{H}_3\text{O}^+(aq) + \text{C}_9\text{H}_7\text{O}_4^– (aq)

Initial  concentration  (M): 0.10 0 0
Change  in  concentration  (M): –0.005 +5.37 × 10^{–3} +5.37 × 10^{–3}
Equilibrium  concentration  (M): –0.005 5.37 × 10^{–3} 5.37 × 10^{–3}
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substitute the equilibrium concentrations into the equilibrium expression as follows:

K_a = \frac{[\text{H}_3\text{O}^+][\text{C}_9\text{H}_7\text{O}_4^–]}{[\text{HC}_9\text{H}_7\text{O}_4]} = \frac{(5.37 × 10^{–3})^2}{0.095} = 3.0 × 10^{–4}

The K_a of aspirin is 3.0 × 10^{–4}

Related Answered Questions

Question: 16.21

Verified Answer:

Substituting the equilibrium concentrations into t...
Question: 16.20

Verified Answer:

Substituting the equilibrium concentrations into t...
Question: 16.14

Verified Answer:

(a)                          \text{CH}_3\te...
Question: 16.16

Verified Answer:

The equilibrium concentrations are substituted int...
Question: 16.13

Verified Answer:

These equilibrium concentrations are then substitu...