Question 5.10: At θ =300° local sidereal time a sea-level (H =0) tracking s...

At θ =300° local sidereal time a sea-level (H =0) tracking station at latitude φ=60° detects a space object and obtains the following data:

Slant range : ϱ = 2551km

Azimuth : A= 90°

Elevation : a = 30°

Range rate : \dot{\varrho} = 0

Azimuth rate: \dot{A}=1.973 \times 10^{-3} rad/s(0.1130°/s)

Elevation rate : \dot{a}=9.864 \times 10^{-4} rad/s(0.05651°/s)

What are the orbital elements of the object?

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We must first employ Algorithm 5.4 to obtain the state vectors r and v in order to compute the orbital elements by means of Algorithm 4.1.
Step 1:
The equatorial radius of the earth is R_{e}=6378 km and the flattening factor is f =0.003353. It follows from Equation 5.56 that the position vector of the observer is

R =\left[\frac{R_{e}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \cos \phi(\cos \theta \hat{ I }+\sin \theta \hat{ J })+\left[\frac{R_{e}(1-f)^{2}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \sin \phi \hat{ K }              (5.56)

R =1598 \hat{ I }-2769 \hat{ J }+5500 \hat{ K }( km )

Step 2:

\delta=\sin ^{-1}(\cos \phi \cos A \cos a+\sin \phi \sin a)
=\sin ^{-1}\left(\cos 60^{\circ} \cos 90^{\circ} \cos 30^{\circ}+\sin 60^{\circ} \sin 30^{\circ}\right)
= 25.66°

Step 3:
Since the given azimuth lies between 0° and 180°, Equation 5.83b yields

h=\left\{\begin{array}{cc}2 \pi-\cos ^{-1}\left(\frac{\cos \phi \sin a-\sin \phi \cos A \cos a}{\cos \delta}\right) & 0^{\circ}<A<180^{\circ} \\\cos ^{-1}\left(\frac{\cos \phi \sin a-\sin \phi \cos A \cos a}{\cos \delta}\right) & 180^{\circ} \leq A \leq 360^{\circ}\end{array}\right.              (5.83b)

h=360^{\circ}-\cos ^{-1}\left(\frac{\cos \phi \sin a-\sin \phi \cos A \cos a}{\cos \delta}\right)
=360^{\circ}-\cos ^{-1}\left(\frac{\cos 60^{\circ} \sin 30^{\circ}-\sin 60^{\circ} \cos 90^{\circ} \cos 30^{\circ}}{\cos 25.66^{\circ}}\right)
= 360° − 73.90° = 286.1°

Therefore, the right ascension is
α = θ − h = 300° − 286.1° = 13.90°

Step 4:

\hat{\varrho}=\cos 25.66\left(\cos 13.90^{\circ} \hat{ I }+\sin 13.90^{\circ} \hat{ J }\right)+\sin \delta \hat{ K }=0.8750 \hat{ I }+0.2165 \hat{ J }+0.4330 \hat{ K }

Step 5:

r = R +\varrho \hat{\varrho}=(1598 \hat{ I }-2769 \hat{ J }+5500 \hat{ K })+2551(0.8750 \hat{ I }+0.2165 \hat{ J }+0.4330 \hat{ K })
r =3831 \hat{ I }-2216 \hat{ J }+6605 \hat{ K }( km )

Step 6:
Recalling from Equation 2.57 that the angular velocity \omega_{E} of the earth is 72.92 \times 10^{-6} rad / s,

\dot{ R }= \Omega \times R =\left(72.92 \times 10^{-6} \hat{ K }\right) \times(1598 \hat{ I }-2769 \hat{ J }+5500 \hat{ K })
=0.2019 \hat{ I }+0.1166 \hat{ J }( km / s )

Step 7:

\dot{\delta}=\frac{1}{\cos \delta}[-\dot{A} \cos \phi \sin A \cos a+\dot{a}(\sin \phi \cos a-\cos \phi \cos A \sin a)]
=\frac{1}{\cos 25.66^{\circ}}\left[-1.973 \times 10^{-3} \cdot \cos 60^{\circ} \sin 90^{\circ} \cos 30^{\circ}+9.864\right.\left.\times 10^{-4}\left(\sin 60^{\circ} \cos 30^{\circ}-\cos 60^{\circ} \cos 90^{\circ} \sin 30^{\circ}\right)\right]
\dot{\delta}=-1.2696 \times 10^{-4}( rad / s )

Step 8:

\dot{\alpha}-\omega_{E}=\frac{\dot{A} \cos A \cos a-\dot{a} \sin A \sin a+\dot{\delta} \sin A \cos a \tan \delta}{\cos \phi \sin a-\sin \phi \cos A \cos a}
=\frac{1.973 \times 10^{-3} \cos 90^{\circ} \cos 30^{\circ}-9.864 \times 10^{-4} \sin 90^{\circ} \sin 30^{\circ}+\left(-1.2696 \times 10^{-4}\right) \sin 90^{\circ} \cos 30^{\circ} \tan 25.66^{\circ}}{\cos 60^{\circ} \sin 30^{\circ}-\sin 60^{\circ} \cos 90^{\circ} \cos 30^{\circ}}
= −0.002184
\dot{\alpha}=72.92 \times 10^{-6}-0.002184=-0.002111( rad / s )

Step 9:

\dot{\hat{\varrho}}=(-\dot{\alpha} \sin \alpha \cos \delta-\dot{\delta} \cos \alpha \sin \delta) \hat{ I }+(\dot{\alpha} \cos \alpha \cos \delta-\dot{\delta} \sin \alpha \sin \delta) \hat{ J }+\dot{\delta} \cos \delta \hat{ K }
=\left[-(-0.002111) \sin 13.90^{\circ} \cos 25.66^{\circ}-(-0.1270) \cos 13.90^{\circ} \sin 25.66^{\circ}\right] \hat{ I }+\left[(-0.002111) \cos 13.90^{\circ} \cos 25.66^{\circ}-(-0.1270) \sin 13.90^{\circ} \sin 25.66^{\circ}\right] \hat{ J } +\left[-0.1270 \cos 25.66^{\circ}\right] \hat{ K }
\dot{\hat{\varrho}}=(0.5104 \hat{ I }-1.834 \hat{ J }-0.1144 \hat{ K })\left(10^{-3}\right)( rad / s )

Step 10:

v =\dot{ R }+\dot{\varrho} \hat{\varrho}+\varrho \dot{\hat{\varrho}}
=(0.2019 \hat{ I }+0.1166 \hat{ J })+0 \cdot(0.8750 \hat{ I }+0.2165 \hat{ J }+0.4330 \hat{ K })+2551\left(0.5104 \times 10^{-3} \hat{ I }-1.834 \times 10^{-3} \hat{ J }-0.1144 \times 10^{-3} \hat{ K }\right)
v =1.504 \hat{ I }-4.562 \hat{ J }-0.2920 \hat{ K }( km / s )

Using the position and velocity vectors from steps 5 and 10,the reader can verify that Algorithm 4.1 yields the following orbital elements of the tracked object
a = 5170km
i = 113.4°
Ω = 109.8°
e = 0.6195
ω = 309.8°
θ = 165.3°
This is a highly elliptical orbit with a semimajor axis less than the earth’s radius, so the object will impact the earth (at a true anomaly of 216°).

Related Answered Questions

Question: 5.5

Verified Answer:

Proceeding as in Example 5.4 we find that the Juli...