Question 4.1: At a certain point in a strained material, there exists a st...

At a certain point in a strained material, there exists a stress condition as shown in Figure 4.8. Find
(a) the normal and shear stresses on the inclined plane AB;
(b) principal stresses and principal planes;
(c) maximum shear stresses and their planes.

4.8
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

We know that if θ be the angle made by the plane AB with the positive direction of the x-axis, then normal stress on plane AB, \sigma_{n n} using Eq. (4.10) is

\sigma_n=\frac{\sigma_{x x}+\sigma_{y y}}{2}+\frac{1}{2}\left(\sigma_{x x}-\sigma_{y y}\right) \cos 2 \phi-\tau_{x y} \sin 2 \phi          (4.10)

\sigma_{n n}=\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)+\frac{1}{2}\left(\sigma_{x x}-\sigma_{y y}\right) \cos 2 \theta-\tau_{x y} \sin 2 \theta           (1)

And the shear stress on plane AB, \tau_{n t} from Eq. (4.11) is

\tau_n=\frac{\sigma_{x x}-\sigma_{y y}}{2} \sin 2 \phi+\tau_{x y} \cos 2 \phi            (4.11)

\tau_{n t}=\frac{1}{2}\left(\sigma_{x x}-\sigma_{y y}\right) \sin 2 \theta+\tau_{x y} \cos 2 \theta          (2)

(a) Now for the plane AB, clearly θ = 120°. Therefore,

\left.\sigma_{n n}\right|_{ AB }=\frac{1}{2}(-30+120)+\frac{1}{2}(-30-120) \cos 240^{\circ}-40 \sin 240^{\circ}=117.14  MPa

and      \left.\tau_{n t}\right|_{ AB }=\frac{1}{2}(-30-120) \sin 240^{\circ}+40 \cos 240^{\circ}=45.0  MPa

(b) Equation (1) can be written as

\sigma_{n n}=\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)+\sqrt{\frac{1}{4}\left(\sigma_{x x}+\sigma_{y y}\right)^2+\tau_{x y}^2} \cos (2 \theta+2 \phi)

where \tan 2 \phi=2 \tau_{x y} /\left(\sigma_{x x}-\sigma_{y y}\right) . Therefore,

\left(\sigma_{n n}\right)_{\max , \min }=\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right) \pm \sqrt{\frac{1}{4}\left(\sigma_{x x}+\sigma_{y y}\right)^2+\tau_{x y}^2}

And these stresses will occur when

2 \theta+2 \phi=0 \quad \text { or } \quad \theta=-\phi=-\frac{1}{2} \tan ^{-1}\left\lgroup \frac{2 \tau_{x y}}{\sigma_{x x}-\sigma_{y y}} \right\rgroup

and      2 \theta+2 \phi=\pi \quad \text { or } \quad \theta=\frac{\pi}{2}-\frac{1}{2} \tan ^{-1}\left\lgroup \frac{2 \tau_{x y}}{\sigma_{x x}-\sigma_{y y}} \right\rgroup

Therefore,

\left(\sigma_{n n}\right)_{\max }=\frac{1}{2}(-30+120)+\sqrt{\frac{1}{4}(-30-120)^2+40^2}=130  MPa

and        \theta_{\max }=-\frac{1}{2} \tan ^{-1}\left(\frac{2 \times 40}{-30-120}\right) \Rightarrow \theta_{\max }=-75.96^{\circ} ⦪

Again,        \left(\sigma_{n n}\right)_{\min }=\frac{1}{2}(-30+120)-\sqrt{\frac{1}{4}(-30-120)^2+40^2}=-40  MPa

with        \theta_{\min }=90^{\circ}-75.96^{\circ} \Rightarrow \theta_{\min }=14.04^{\circ}

(c) From Eq. (2), it can be written as

\tau_{ nt }=\sqrt{\frac{1}{4}\left(\sigma_{x x}-\sigma_{y y}\right)^2+\tau_{x y}} \sin (2 \theta+2 \phi)

Substituting values, we get

\left.\tau_{ nt }\right|_{\max }=\sqrt{\frac{1}{4}\left(\sigma_{x x}-\sigma_{y y}\right)^2+\tau_{x y}^2}=85  MPa

with          \left(\theta_s\right)_{\max }=\frac{\pi}{4}-\phi=45^{\circ}-75.96^{\circ} \Rightarrow\left(\theta_s\right)_{\max }=-30.96^{\circ}

The above results can be comprehensively represented in Mohr’s circle as shown in Figure 4.9.

4.9

Related Answered Questions