Question 5.9: At a given time, the geocentric equatorial position vector o...
At a given time, the geocentric equatorial position vector of the International Space Station is
r =-2032.4 \hat{ I }+4591.2 \hat{ J }-4544.8 \hat{ K }( km )Determine the azimuth and elevation angle relative to a sea-level (H =0) observer whose latitude is φ=−40° and local sidereal time is θ =110°.
Learn more on how we answer questions.
Using Equation 5.56 we find the position vector of the observer to be
R =\left[\frac{R_{e}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \cos \phi(\cos \theta \hat{ I }+\sin \theta \hat{ J })+\left[\frac{R_{e}(1-f)^{2}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \sin \phi \hat{ K } (5.56)
R =-1673 \hat{ I }+4598 \hat{ J }-4078 \hat{ K }( km )For the position vector of the space station relative to the observer we have (Equation 5.53)
\varrho= r – R
=(-2032 \hat{ I }+4591 \hat{ J }-4545 \hat{ K })-(-1673 \hat{ I }+4598 \hat{ J }-4078 \hat{ K })
=-359.0 \hat{ I }-6.342 \hat{ J }-466.9 \hat{ K }( km )
or, in matrix notation,
\{\varrho\}_{X}=\left\{\begin{array}{l}-359.0 \\-6.342 \\-466.9\end{array}\right\}( km )To transform these geocentric equatorial components into the topocentric horizon system we need the transformation matrix [ Q ]_{X x}, which is given by Equation 5.62a,
=\left[\begin{array}{ccc}-\sin 110^{\circ} & \cos 110^{\circ} & 0 \\-\sin \left(-40^{\circ}\right) \cos 110^{\circ} & -\sin \left(-40^{\circ}\right) \sin 110^{\circ} & \cos \left(-40^{\circ}\right) \\\cos \left(-40^{\circ}\right) \cos 110^{\circ} & \cos \left(-40^{\circ}\right) \sin 110^{\circ} & \sin \left(-40^{\circ}\right)\end{array}\right]
Thus,
=\left\{\begin{array}{c}339.5 \\-282.6 \\389.6\end{array}\right\}( km )
or, reverting to vector notation,
\varrho=339.5 \hat{ i }-282.6 \hat{ j }+389.6 \hat{ k }( km )The magnitude of this vector is ϱ=589.0km. Hence, the unit vector in the direction of ϱ is
\hat{\varrho}=\frac{\varrho}{\varrho}=0.5765 \hat{ i }-0.4787 \hat{ j }+0.6615 \hat{ k }Comparing this with Equation 5.58 we see that sin a = 0.6615, so that the angular elevation is
\hat{ \varrho }=\cos a \sin A \hat{ i }+\cos a \cos A \hat{ j }+\sin a \hat{ k } (5.58)
a=\sin ^{-1} 0.6615=\underline{41.41^{\circ}}Furthermore
\sin A=\frac{0.5765}{\cos a}=0.7687
\cos A=\frac{-0.4787}{\cos a}=-0.6397
It follows that
A=\cos ^{-1}(-0.6397)=129.8^{\circ} (second quadrant) or 230.2° (third quadrant)
A must lie in the second quadrant because sin A > 0. Thus the azimuth is
A = 129.8°