Question 5.9: At a given time, the geocentric equatorial position vector o...

At a given time, the geocentric equatorial position vector of the International Space Station is

r =-2032.4 \hat{ I }+4591.2 \hat{ J }-4544.8 \hat{ K }( km )

Determine the azimuth and elevation angle relative to a sea-level (H =0) observer whose latitude is φ=−40° and local sidereal time is θ =110°.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Using Equation 5.56 we find the position vector of the observer to be

R =\left[\frac{R_{e}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \cos \phi(\cos \theta \hat{ I }+\sin \theta \hat{ J })+\left[\frac{R_{e}(1-f)^{2}}{\sqrt{1-\left(2 f-f^{2}\right) \sin ^{2} \phi}}+H\right] \sin \phi \hat{ K }              (5.56)

R =-1673 \hat{ I }+4598 \hat{ J }-4078 \hat{ K }( km )

For the position vector of the space station relative to the observer we have (Equation 5.53)

\varrho= r – R
=(-2032 \hat{ I }+4591 \hat{ J }-4545 \hat{ K })-(-1673 \hat{ I }+4598 \hat{ J }-4078 \hat{ K })
=-359.0 \hat{ I }-6.342 \hat{ J }-466.9 \hat{ K }( km )

or, in matrix notation,

\{\varrho\}_{X}=\left\{\begin{array}{l}-359.0 \\-6.342 \\-466.9\end{array}\right\}( km )

To transform these geocentric equatorial components into the topocentric horizon system we need the transformation matrix [ Q ]_{X x}, which is given by Equation 5.62a,

[ Q ]_{X x}=\left[\begin{array}{ccc}-\sin \theta & \cos \theta & 0 \\-\sin \phi \cos \theta & -\sin \phi \sin \theta & \cos \phi \\\cos \phi \cos \theta & \cos \phi \sin \theta & \sin \phi\end{array}\right]
=\left[\begin{array}{ccc}-\sin 110^{\circ} & \cos 110^{\circ} & 0 \\-\sin \left(-40^{\circ}\right) \cos 110^{\circ} & -\sin \left(-40^{\circ}\right) \sin 110^{\circ} & \cos \left(-40^{\circ}\right) \\\cos \left(-40^{\circ}\right) \cos 110^{\circ} & \cos \left(-40^{\circ}\right) \sin 110^{\circ} & \sin \left(-40^{\circ}\right)\end{array}\right]

Thus,

\{\varrho\}_{x}=[ Q ]_{X x}\{\varrho\}_{X}=\left[\begin{array}{ccc}-0.9397 & -0.3420 & 0 \\-0.2198 & 0.6040 & 0.7660 \\-0.2620 & 0.7198 & -0.6428\end{array}\right]\left\{\begin{array}{l}-359.0 \\-6.342 \\-466.9\end{array}\right\}
=\left\{\begin{array}{c}339.5 \\-282.6 \\389.6\end{array}\right\}( km )

or, reverting to vector notation,

\varrho=339.5 \hat{ i }-282.6 \hat{ j }+389.6 \hat{ k }( km )

The magnitude of this vector is ϱ=589.0km. Hence, the unit vector in the direction of ϱ is

\hat{\varrho}=\frac{\varrho}{\varrho}=0.5765 \hat{ i }-0.4787 \hat{ j }+0.6615 \hat{ k }

Comparing this with Equation 5.58 we see that sin a = 0.6615, so that the angular elevation is

\hat{ \varrho }=\cos a \sin A \hat{ i }+\cos a \cos A \hat{ j }+\sin a \hat{ k }            (5.58)

a=\sin ^{-1} 0.6615=\underline{41.41^{\circ}}

Furthermore

\sin A=\frac{0.5765}{\cos a}=0.7687
\cos A=\frac{-0.4787}{\cos a}=-0.6397

It follows that

A=\cos ^{-1}(-0.6397)=129.8^{\circ} (second quadrant) or 230.2° (third quadrant)

A must lie in the second quadrant because sin A > 0. Thus the azimuth is
A = 129.8°

Related Answered Questions

Question: 5.5

Verified Answer:

Proceeding as in Example 5.4 we find that the Juli...