Question 10.12: At an instant of interest to, the center of mass of a rigid ...

At an instant of interest to, the center of mass of a rigid body of mass m = 20 kg has an intrinsic velocity v* = 25t m/sec, the moment of momentum about the center of mass is  \mathbf{h}_C=1100 \mathbf{e}_1  –  500 \mathbf{e}_2  +  600 \mathbf{e}_3  kg  . m²/ sec, and the moment of inertia tensor is   \mathbf{I}_C=25 \left(\mathbf{e}_{11}  +  \mathbf{e}_{22}\right)  –  15\left(\mathbf{e}_{12}  +  \mathbf{e}_{21}\right)  +  30  \mathbf{e}_{33}  kg .m², referred to a body reference frame   \varphi=\left\{C ; \mathbf{e}_k\right\}.  Find the total kinetic energy of the body.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The total kinetic energy of the body at the moment of concern may be found from (10.101). An easy calculation gives   K^*=\frac{1}{2} m \mathbf{v}^* \cdot \mathbf{v}^*=6250 \mathrm{~N} \cdot \mathrm{m},  the kinetic energy of the center of mass. To find   K_{r C}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_C  in (10.100), bearing in mind that  \mathbf{h}_C  is given, we must first find   \boldsymbol{\omega}=\omega_k \mathbf{e}_k  such that   \mathbf{h}_C=\mathbf{I}_C \boldsymbol{\omega}.  For the assigned moment of inertia tensor, the moment of momentum relative to C is given by   \mathbf{h}_C=\left(25 \omega_1  –  15 \omega_2\right) \mathbf{e}_1  +  \left(-15 \omega_1  +  25 \omega_2\right) \mathbf{e}_2  +  30 \omega_3 \mathbf{e}_3.  Equating these scalar components with those given at  t_o,  we find three equations for the components   \omega_k :

K_{r C}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_C=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I}_C \boldsymbol{\omega} .                      (10.100)

K(\mathscr{B}, t)=\frac{1}{2} m \mathbf{v}^* \cdot \mathbf{v}^*  +  \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I}_C \boldsymbol{\omega}.                 (10.101)

25 \omega_1  –  15 \omega_2=1100, \quad  –  15 \omega_1+25 \omega_2=-500, \quad 30 \omega_3=600.

These yield   \boldsymbol{\omega}=50 \mathbf{e}_1  +  10 \mathbf{e}_2  +  20 \mathbf{e}_3  rad/sec . Hence, with the  assigned value for   \mathbf{h}_C,  the kinetic energy relative to the center of mass is   K_{r C}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_C=31,000  N . m. The total kinetic energy of the body in the inertial frame now follows from (10.101 ) or (10.94):  K=37,250  \mathrm{~N} \cdot \mathrm{m}.

K(\mathscr{B}, t)=K^*(\mathscr{B}, t)  +  K_{r C}(\mathscr{B}, t)                     (10.94)

Related Answered Questions

Question: 10.16

Verified Answer:

The resultant force R exerted on the rod by the sm...