Question 10.12: At an instant of interest to, the center of mass of a rigid ...
At an instant of interest to, the center of mass of a rigid body of mass m = 20 kg has an intrinsic velocity v* = 25t m/sec, the moment of momentum about the center of mass is \mathbf{h}_C=1100 \mathbf{e}_1 – 500 \mathbf{e}_2 + 600 \mathbf{e}_3 kg . m²/ sec, and the moment of inertia tensor is \mathbf{I}_C=25 \left(\mathbf{e}_{11} + \mathbf{e}_{22}\right) – 15\left(\mathbf{e}_{12} + \mathbf{e}_{21}\right) + 30 \mathbf{e}_{33} kg .m², referred to a body reference frame \varphi=\left\{C ; \mathbf{e}_k\right\}. Find the total kinetic energy of the body.
Learn more on how we answer questions.
The total kinetic energy of the body at the moment of concern may be found from (10.101). An easy calculation gives K^*=\frac{1}{2} m \mathbf{v}^* \cdot \mathbf{v}^*=6250 \mathrm{~N} \cdot \mathrm{m}, the kinetic energy of the center of mass. To find K_{r C}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_C in (10.100), bearing in mind that \mathbf{h}_C is given, we must first find \boldsymbol{\omega}=\omega_k \mathbf{e}_k such that \mathbf{h}_C=\mathbf{I}_C \boldsymbol{\omega}. For the assigned moment of inertia tensor, the moment of momentum relative to C is given by \mathbf{h}_C=\left(25 \omega_1 – 15 \omega_2\right) \mathbf{e}_1 + \left(-15 \omega_1 + 25 \omega_2\right) \mathbf{e}_2 + 30 \omega_3 \mathbf{e}_3. Equating these scalar components with those given at t_o, we find three equations for the components \omega_k :
K_{r C}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_C=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I}_C \boldsymbol{\omega} . (10.100)
K(\mathscr{B}, t)=\frac{1}{2} m \mathbf{v}^* \cdot \mathbf{v}^* + \frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{I}_C \boldsymbol{\omega}. (10.101)
25 \omega_1 – 15 \omega_2=1100, \quad – 15 \omega_1+25 \omega_2=-500, \quad 30 \omega_3=600.
These yield \boldsymbol{\omega}=50 \mathbf{e}_1 + 10 \mathbf{e}_2 + 20 \mathbf{e}_3 rad/sec . Hence, with the assigned value for \mathbf{h}_C, the kinetic energy relative to the center of mass is K_{r C}=\frac{1}{2} \boldsymbol{\omega} \cdot \mathbf{h}_C=31,000 N . m. The total kinetic energy of the body in the inertial frame now follows from (10.101 ) or (10.94): K=37,250 \mathrm{~N} \cdot \mathrm{m}.
K(\mathscr{B}, t)=K^*(\mathscr{B}, t) + K_{r C}(\mathscr{B}, t) (10.94)