Question 11.SP.14: Automobile A is traveling east at the constant speed of 36 k...

Automobile A is traveling east at the constant speed of 36 km/h. As automobile A crosses the intersection shown, automobile B starts from rest 35 m north of the intersection and moves south with a constant acceleration of 1.2 m/s². Determine the position, velocity, and acceleration of B relative to A 5 s after A crosses the intersection.

SP11.14-0
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

STRATEGY: This is a relative motion problem. Determine the motion of each vehicle independently, and then use the definition of relative motion to determine the desired quantities.
MODELING and ANALYSIS:
Motion of Automobile A. Choose x and y axes with the origin at
the intersection of the two streets and with positive senses directed east
and north, respectively. First express the speed in m/s, as

v_{A}=\left(36 \frac{\mathrm{km}}{\mathrm{h}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)\left(\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right)=10 \mathrm{~m} / \mathrm{s}

The motion of A is uniform, so for any time t

a_{A}=0\\v_A=+10 \mathrm{~m} / \mathrm{s}\\x_{A}={(x_A)}_0+v_At=0+10 t

For t = 5 s, you have (Fig. 1)

\begin{array}{ll}a_{A}=0 & \mathbf{a}_{A}=0 \\v_{A}=+10 \mathrm{~m}/ \mathrm{s} & \mathbf{v}_{A}=10 \mathrm{~m} / \mathrm{s} \rightarrow \\x_{A}=+\left(10 \mathrm{~m} / \mathrm{s}\right)(5 \mathrm{~s})=+50 \mathrm{~m} & \mathbf{r}_{A}=50 \mathrm{~m} \rightarrow\end{array}

Motion of Automobile B. The motion of B is uniformly acceler-ated, so

\begin{aligned}&a_{B}=-1.2 \mathrm{~m} / \mathrm{s}^{2} \\&v_{B}=\left(v_{B}\right)_{0}+a t=0-1.2 t \\&y_{B}=\left(y_{B}\right)_{0}+\left(v_{B}\right)_{0} t+\frac{1}{2} a_{B} t^{2}=35+0-\frac{1}{2}(1.2) t^{2}\end{aligned}

For t =5 s, you have (Fig. 1)

\begin{array}{ll}a_{B}=-1.2 \mathrm{~m} / \mathrm{s}^{2} & \mathbf{a}_{B}=1.2 \mathrm{~m} / \mathrm{s}^{2} \downarrow \\v_{B}=-\left(1.2 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})=-6 \mathrm{~m} / \mathrm{s} & \mathbf{v}_{B}=6 \mathrm{~m} / \mathrm{s} \downarrow \\y_{B}=35-\frac{1}{2}\left(1.2 \mathrm{~m} / \mathrm{s}^{2}\right)(5 \mathrm{~s})^{2}=+20 \mathrm{~m} & \mathbf{r}_{B}=20 \mathrm{~m} \uparrow\end{array}

Motion of B Relative to A. Draw the triangle corresponding to the
vector equation r_{B} = r_{A}+ r_{B/A} (Fig. 2) and obtain the magnitude and direction of the position vector of B relative to A.

r_{B / A}=53.9 \mathrm{~m} \quad \alpha=21.8^{\circ} \quad \mathbf{r}_{B / A}=53.9 \mathrm{~m} \measuredangle 21.8^{\circ}

Proceeding in a similar fashion (Fig. 2), find the velocity and acceleration of B relative to A. Hence,

\begin{aligned}&&\mathbf{v}_{B}=\mathbf{v}_{A}+\mathbf{v}_{B / A}\\&v_{B / A}=11.66 \mathrm{~m} / \mathrm{s}&\beta=31.0^{\circ}&\qquad\mathbf{v}_{B / A}=11.66 \mathrm{~m} / \mathrm{s}\measuredangle 31.0^{\circ}\\ &\mathbf{a}_{B}=\mathbf{a}_{A}+\mathbf{a}_{B / A}&&\qquad\mathbf{a}_{B / A}=1.2 \mathrm{~m} / \mathrm{s}^{2} \downarrow\end{aligned}

REFLECT and THINK: Note that the relative position and velocity of B relative to A change with time; the values given here are only for the moment t = 5 s. Rather than drawing triangles, you could have also used vector algebra. When the vectors are at right angles, as in this problem, drawing vector triangles is usually easiest.

SP11.14-1
SP11.14-2

Related Answered Questions