Question 6.4.3: Calculate Ix and Iy for the T-section with respect to the ce...

MOMENT OF INERTIA OF A COMPOSITE AREA

Calculate I_{x} and I_{y} for the T-section with respect to the centroidal axes shown in Figure 1.

Screenshot 2022-05-29 120631
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Goal Find I_{x} and I_{y} for the defined T-section.
Given Dimensions of the T-section, location of its centroid, and a coordinate system.
Assume No assumptions needed.
Draw We divide the T-section into two rectangles and identify the centroid for each one (Figure 2).
Formulate Equations and Solve We find the moment of inertia of the composite section by finding I_{x} and I_{y} for each rectangle and summing them.

I_{x}=I_{1x}+ I_{2x}          and    I_{y}=I_{1y}+ I_{2y}

Table C.1 gives the moment of inertia for a rectangle about axes through its centroid. For each rectangle we need to use the parallel axis theorem (6.28A) to find the moment of inertia about the x axis.

I_{x}= I_{x_{C}}+ A\left(y_{1} \right) ^{2}                                     (6.28A)
I_{ix}= I_{x_{Ci}}+ Ax^{2}_{1i}

Since the y axis of the T-section coincides with the centroidal y axes for both of the rectangles we do not need the parallel axis theorem for I_{y}. We use a tabular format for our calculations to keep the calculations organized:

Rectangle Area
in.²
I_{x_{C}}
in.^{4}
 y_{1}
in.
Ay^{1}_{2}
in.^{4}
I_{y_{C}}
in.^{4}
1 36 12 5 900 972
2 36 972 5 900 12
984 1,800 984

I_{x}= \sum{I_{ix}} = \sum{I_{x_{Ci}}} + \sum{Ay_{1i^{2}}} = 984  in.^{4} + 1,800  in.^{4}=2, 784  in.^{4}
I_{y}=\sum{I_{iy}}= 984  in.^{4}

Check There is no easy way to check our solution, but we could use (6.26A) and (6.26B) and integrate to find I_{x}and I_{y}.

I_{x}=\int_{area}^{}{y^{2} dA}              (6.26A)
I_{y}=\int_{area}^{x}{x^{2} dA}          (6.26B)

Table C.1 Areas, Centroids, and Area Moments of Inertia

Shape Area Moment of inertia
I_{xc} = \frac{bh^{3}}{12}

 

I_{yc} = \frac{b^{3}h}{12}

 

I_{x} = \frac{bh^{3}}{3}

 

I_{y} = \frac{b^{3}h}{3}

I_{xc} = \frac{bh^{3}}{36}

 

I_{yc} = \frac{b^{3}h}{36}

 

I_{x} = \frac{bh^{3}}{12}

 

I_{y} = \frac{b^{3}h}{12}

I_{xc} = \frac{bh^{3}}{36}

 

I_{yc} = \frac{bh}{36} (b^{2} +c^{2} -bc)

 

I_{x} = \frac{bh^{3}}{12}

I_{xc} =I_{yc} = \frac{1}{4}\pi r^{4}  
I_{xc} =I_{yc} = \left\lgroup\frac{\pi }{16} – \frac{4}{9\pi } \right\rgroup  r^{4}  

I_{x} =I_{y} = \frac{\pi r^{4}}{16}    

I_{xc} =\frac{r^{4}}{\pi}  \left\lgroup\alpha – \frac{\sin 2\alpha }{2} \right\rgroup

I_{yc} = \frac{r^{4}}{\pi}  \left\lgroup\alpha + \frac{\sin 2\alpha }{2} \right\rgroup  

I_{xc} =\frac{\pi}{4}  ab^{3}

I_{yc} = \frac{\pi}{4}  a^{3}   b

I_{xc} =\left\lgroup\frac{9\pi ^{4}- 64}{144\pi } \right\rgroup  ab^{3}

I_{yc} = \left\lgroup\frac{9\pi ^{4}- 64}{144\pi } \right\rgroup   a^{3}   b

I_{xc} =\frac{8}{175}  ab^{3}

I_{yc} = \frac{19}{480}  a^{3}   b

I_{xc} =\frac{19}{1050}  ab^{3}

I_{yc} = \frac{1}{80}  a^{3}   b

Screenshot 2022-05-29 120658

Related Answered Questions

Question: 6.4.2

Verified Answer:

Goal Find the (a) moment of inertia and (b) the ra...