Question 6.4.2: Calculate Ix, Iy, rx and ry for the right triangle shown in ...

MOMENT OF INERTIA USING PARALLEL AXIS THEOREM

Calculate I_{x} , I_{y} , r_{x} and r_{y} for the right triangle shown in Figure 1.

 

Screenshot 2022-05-29 122113
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Goal Find the (a) moment of inertia and (b) the radius of gyration about the x and y axes for the defined right triangle.
Given Dimensions of the triangle, location of its centroid, and a coordinate system.
Assume No assumptions needed.
Draw No drawing needed.
Formulate Equations and Solve (a) A triangle is a standard shape whose properties are tabulated in Appendix C. From Table C.1 we find the area of the triangle and its moment of inertia about x and y axes through the centroid.

A=\frac{ab}{2}
I_{xc}=\frac{ab^{3}}{36}
I_{yc}=\frac{a^{3}b}{36}

We then use the parallel axis theorem (6.28A) to determine the moment of inertia about the x axis. The x axis is at distance y_{1} = 2b/3 from the centroidal x axis.

I_{x}= I_{x_{C}}+ A\left(y_{1} \right) ^{2}              (6.28A)
I_{x}=I_{xc}+ Ay^{2}_{1}=\frac{ab^{3}}{36}+\frac{ab}{2}\left\lgroup\frac{2b}{3}\right\rgroup ^{2} = \frac{ab^{3}}{4}

Similarly, we use (6.28B) to determine the moment of inertia about the y axis, which is at distance x_{1} = a/3 from the centroidal y axis.

I_{y}= I_{y_{C}}+ A\left(x_{1} \right) ^{2}              (6.28B)
I_{y}=I_{yc}+ Ax^{2}_{1}=\frac{a^{3}b}{36}+ \frac{ab}{2}\left\lgroup\frac{a}{3}\right\rgroup ^{2} =\frac{a^{3}b}{12}

(b) We use the results from (a), (6.29A) and (6.29B) to determine the radii of gyration.

r_{x}=\sqrt{\frac{I_{x}}{A} } =\sqrt{\frac{{ab^{3}}/{4}}{{ab}/{2}} } =\sqrt{\frac{3b^{2}}{2} } =b\sqrt{\frac{3}{2} }
r_{y}=\sqrt{\frac{I_{y}}{A} }=\sqrt{\frac{{a^{3}b}/{12}}{{ab}/{2}} } = \sqrt{\frac{a^{2}}{6} }=\frac{a}{\sqrt{6} }

Check I_{y} is tabulated in Table C.1, and our result agrees with the table. We could use (6.26A) and integrate to check I_{x} .

I_{x}=\int_{area}^{}{y^{2} dA}              (6.26A)

Table C.1 Areas, Centroids, and Area Moments of Inertia

Shape Area Moment of inertia
I_{xc} = \frac{bh^{3}}{12}

 

I_{yc} = \frac{b^{3}h}{12}

 

I_{x} = \frac{bh^{3}}{3}

 

I_{y} = \frac{b^{3}h}{3}

I_{xc} = \frac{bh^{3}}{36}

 

I_{yc} = \frac{b^{3}h}{36}

 

I_{x} = \frac{bh^{3}}{12}

 

I_{y} = \frac{b^{3}h}{12}

I_{xc} = \frac{bh^{3}}{36}

 

I_{yc} = \frac{bh}{36} (b^{2} +c^{2} -bc)

 

I_{x} = \frac{bh^{3}}{12}

I_{xc} =I_{yc} = \frac{1}{4}\pi r^{4}  
I_{xc} =I_{yc} = \left\lgroup\frac{\pi }{16} – \frac{4}{9\pi } \right\rgroup  r^{4}  

I_{x} =I_{y} = \frac{\pi r^{4}}{16}    

I_{xc} =\frac{r^{4}}{\pi}  \left\lgroup\alpha – \frac{\sin 2\alpha }{2} \right\rgroup

I_{yc} = \frac{r^{4}}{\pi}  \left\lgroup\alpha + \frac{\sin 2\alpha }{2} \right\rgroup  

I_{xc} =\frac{\pi}{4}  ab^{3}

I_{yc} = \frac{\pi}{4}  a^{3}   b

I_{xc} =\left\lgroup\frac{9\pi ^{4}- 64}{144\pi } \right\rgroup  ab^{3}

I_{yc} = \left\lgroup\frac{9\pi ^{4}- 64}{144\pi } \right\rgroup   a^{3}   b

I_{xc} =\frac{8}{175}  ab^{3}

I_{yc} = \frac{19}{480}  a^{3}   b

I_{xc} =\frac{19}{1050}  ab^{3}

I_{yc} = \frac{1}{80}  a^{3}   b

Related Answered Questions

Question: 6.4.3

Verified Answer:

Goal Find I_{x} and I_{y}[/l...