Question 7.15: Calculate the deflections at points A and C of the beam show...

Calculate the deflections at points A and C of the beam shown in Figure 7.27. Assume EI to be constant.

7.27
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Let us first draw the free-body diagram of the beam as shown in Figure 7.28(a) to determine the support reactions.

Consider

\sum M_{ B }=0 \Rightarrow R_{ D } L+\frac{w_{ o } L^2}{8}=\frac{3 w_{ o } L^2}{8}

Therefore,

R_{ D }=\frac{w_{ o } L}{4}(\uparrow)

But,

\sum F_y=0 \Rightarrow R_{ B }=w_{ o } L-\frac{w_{ o } L}{4}=\frac{3}{4} w_{ o } L(\uparrow)

In Figure 7.28(b), we represent the equivalent loading diagram. We can now write the bending moment, M_x at any arbitrary section at a distance x from end A as shown:

M_x=-\frac{w_{ o } x^2}{2}+R_{ B }\left\langle x-\frac{L}{2}\right\rangle+\frac{w_{ o }}{2}\left\langle x-\frac{L}{2}\right\rangle^2-\frac{w_{ o }}{2}\langle x-L\rangle^2

Putting R_{ B }=3 w_{ o } L / 4 , we get

M_x=-\frac{w_{ o } x^2}{2}+\frac{3}{4} w_{ o } L\left\langle x-\frac{L}{2}\right\rangle+\frac{w_{ o }}{2}\left\langle x-\frac{L}{2}\right\rangle^2-\frac{w_{ o }}{2}\langle x-L\rangle^2

Now, from flexure equation, we get from the above expression

(E I) \frac{ d ^2 y}{ d x^2}=-\frac{w_0 x^2}{2}-\frac{3}{4} w_{ o } L\left\langle x-\frac{L}{2}\right\rangle-\frac{w_0}{2}\left\langle x-\frac{L}{2}\right\rangle^2+\frac{w_0}{2}\langle x-L\rangle^2

Integrating successively the above equation, we get

(E I) \frac{ d y}{ d x}=\frac{w_{ o } x^3}{6}-\frac{3}{8} w_{ o } L\left\langle x-\frac{L}{2}\right\rangle^2-\frac{w_{ o }}{6}\left\langle x-\frac{L}{2}\right\rangle^3+\frac{w_{ o }}{6}\langle x-L\rangle^3+C_1             (1)

and      (E I) y=\frac{w_{ o } x^4}{24}-\frac{w_{ o } L}{8}\left\langle x-\frac{L}{2}\right\rangle^3-\frac{w_{ o }}{24}\left\langle x-\frac{L}{2}\right\rangle^4+\frac{w_{ o }}{24}\langle x-L\rangle^4+C_1 x+C_2         (2)

Now, the boundary conditions are: (a) at x = L/2, y = 0 and (b) at x = 3L/2, y = 0.
From Eq. (2) by putting the boundary conditions, we get

\frac{w_{ o }}{24}\left\lgroup \frac{L}{2} \right\rgroup^4+\left\lgroup \frac{L}{2} \right\rgroup C_1+C_2=0

or          \frac{L C_1}{2}+C_2=-\frac{w_{ o } L^4}{384}           (3)

and        \frac{w_{ o }}{24}\left\lgroup \frac{3 L}{2} \right\rgroup^4-\frac{w_{ o } L^4}{8}-\frac{w_{ o } L^4}{24}+\frac{w_{ o }}{24}\left\lgroup \frac{L}{2} \right\rgroup^4+\frac{3 L C_1}{2}+C_2=0

or            \left\lgroup \frac{3 L}{2} \right\rgroup C_1+C_2=-\frac{3 w_0 L^4}{64}            (4)

From Eqs. (3) and (4),

C_1=-\frac{17 w_{ o } L^3}{384} \text { and } C_2=\frac{5 w_{ o } L^4}{256}

After substituting C_1 \text { and } C_2 , Eqs. (1) and (2) become

(E I) \frac{ d y}{ d x}=\frac{w_{ o } x^3}{6}-\frac{3}{8} w_{ o } L\left\langle x-\frac{L}{2}\right\rangle^2-\frac{w_{ o }}{6}\left\langle x-\frac{L}{2}\right\rangle^3+\frac{w_{ o }}{6}\langle x-L\rangle^3-\frac{17 w_{ o } L}{384}              (5)

and        (E I) y=\frac{w_{ o } x^4}{24}-\frac{w_{ o } L}{8}\left\langle x-\frac{L}{2}\right\rangle^3-\frac{w_{ o }}{24}\left\langle x-\frac{L}{2}\right\rangle^4+\frac{w_{ o }}{24}\langle x-L\rangle^4-\frac{17 w_{ o } L^3 x}{384}+\frac{5 w_{ o } L^4}{256}               (6)

Now to obtain deflection at A and C, we need to put x = 0 and x = L in Eq. (6)

\left.(E I) y\right|_{x=0}=(E I) \delta_{ A }=\frac{5 w_{ o } L^4}{256}

or        \delta_{ A }=\frac{5 w_{ o } L^4}{256 E I}(\downarrow)

and        \left.(E I) y\right|_{x=l}=(E I) \delta_{ C }=\frac{w_{ o } L^4}{24}-\frac{w_{ o } L^4}{64}-\frac{w_{ o } L^4}{384}+\frac{5 w_{ o } L^4}{256}-\frac{17 w_{ o } L^4}{384}=-\frac{w_{ o } L^4}{768 E I}

or        \delta_{ C }=-\frac{w_{ o } L^4}{768 E I}

Since deflection at point C is negative, it must be in the upward direction. Hence,

\delta_{ C }=\frac{w_{ o } L^4}{768 E I}(\uparrow)

7.28

Related Answered Questions

Question: 7.18

Verified Answer:

From the previous problem, we note that the flexur...
Question: 7.17

Verified Answer:

We note from the given beam loading that it is a s...
Question: 7.16

Verified Answer:

Let us draw the free-body diagram of the beam as s...
Question: 7.11

Verified Answer:

We draw the free-body diagram of the beam as shown...
Question: 7.8

Verified Answer:

In the problem, the load P is applied such that sy...