Question 16.20: Calculate the end moments at the supports in the beam shown ...
Calculate the end moments at the supports in the beam shown in Fig. 16.42 if the support at B is subjected to a settlement of 12 \mathrm{~mm}. Furthermore, the second moment of area of the cross section of the beam is 9 \times 10^{6} \mathrm{~mm}^{4} in the span \mathrm{AB} and 12 \times 10^{6} \mathrm{~mm}^{4} in the span \mathrm{BC}; Young’s modulus, E, is 200000 \mathrm{~N} / \mathrm{mm}^{2}.

Learn more on how we answer questions.
In this example the FEMs produced by the applied loads are modified by additional moments produced by the sinking support. Thus, using Table 16.6
\begin{aligned} & M_{\mathrm{AB}}^{\mathrm{F}}=-\frac{6 \times 5^{2}}{12}-\frac{6 \times 200000 \times 9 \times 10^{6} \times 12}{\left(5 \times 10^{3}\right)^{2} \times 10^{6}}=-17.7 \mathrm{kN} \mathrm{m} \\ & M_{\mathrm{BA}}^{\mathrm{F}}=+\frac{6 \times 5^{2}}{12}-\frac{6 \times 200000 \times 9 \times 10^{6} \times 12}{\left(5 \times 10^{3}\right)^{2} \times 10^{6}}=+7.3 \mathrm{kN} \mathrm{m} \end{aligned}
Since the support at \mathrm{C} is an outside pinned support, the effect on the FEMs in BC of the settlement of B is reduced (see the last case in Table 16.6). Thus
\begin{aligned} & M_{\mathrm{BC}}^{\mathrm{F}}=-\frac{40 \times 6}{8}+\frac{3 \times 200000 \times 12 \times 10^{6} \times 12}{\left(6 \times 10^{3}\right)^{2} \times 10^{6}}=-27.6 \mathrm{kN} \mathrm{m} \\ & M_{\mathrm{CB}}^{\mathrm{F}}=+\frac{40 \times 6}{8}=+30.0 \mathrm{kN} \mathrm{m} \end{aligned}
The DFs are
\mathrm{DF}_{\mathrm{BA}}=\frac{K_{\mathrm{BA}}}{K_{\mathrm{BA}}+K_{\mathrm{BC}}}=\frac{\left(4 E \times 9 \times 10^{6}\right) / 5}{\left(4 E \times 9 \times 10^{6}\right) / 5+\left(3 E \times 12 \times 10^{6}\right) / 6}=0.55
Hence
\mathrm{DF}_{\mathrm{BC}}=1-0.55=0.45
\begin{array}{lcccc} \hline & A & &B &&C \\ \hline { DFs } & – & 0.55 && 0.45 & 1.0\\ \hline \text { FEMs } & -17.7 & +7.3 && -27.6 & +30.0\\ \text { Balance C }&&&&& _{\swarrow} \underline{-30.0} \\ \text{Carrv over} & & && -15.0 & \\ \text{Balance B} & & _{\swarrow} \underline{+19.41} && \underline{+15.89} & \\ \text{Carry over} & +9.71 & & & \\ \text{Final moments} & -7.99 & +26.71& & -26.71 & 0 \\ \hline \end{array}
Note that in this example balancing the beam at \mathrm{B} has a significant effect on the fixing moment at \mathrm{A}; we therefore complete the distribution after a carry over to A.
TABLE 16.6
FEMs ![]() |
||
Load case | \textstyle{M}_{\mathrm{AB}}^{\mathrm{F}} |
\textstyle{M}_{\mathrm{BA}}^{\mathrm{F}} |
![]() |
-{\frac{W L}{\mathrm{8}}} |
+{\frac{W L}{\mathrm{8}}} |
![]() |
-{\frac{W a b^{2}}{L^2}} |
+{\frac{W a^{2} b}{L^2}} |
![]() |
-{\frac{w L^{2}}{12}} |
+{\frac{w L^{2}}{12}} |
![]() |
-\frac{w}{L^{2}}\left[\frac{L^{2}}{2}(b^{2}-a^{2})-\frac{2}{3}L(b^{3}-a^{3})+\frac{1}{4}(b^{4}-a^{4})\right] |
+\frac{w b^{3}}{L^{2}}\left(\frac{L}{3}-\frac{b}{4}\right) |
![]() |
+\frac{M_{0}b}{L^{2}}(2a-b) |
+\frac{M_{0}a}{L^{2}}(2b-a) |
![]() |
-{\frac{6EIδ}{L^2}} |
-{\frac{6EIδ}{L^2}} |
![]() |
0 |
-{\frac{3EIδ}{L^2}} |