Question 5.2: Calculate the energy density, the energy flux density and th...

Calculate the energy density, the energy flux density and the momentum density: a) for a progressive plane sound wave, whose velocity potential is Ψ = f(t – e.r/v_s) ; and b) for a progressive spherical diverging sound wave whose velocity potential is Ψ =(R/r)Ψ_m \cos (wt-kr). Show that, at a large distance in this last case,   E_v and the intensity decrease like 1/r² . Interpret this result.

 

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

a) Writing \Psi =f(\xi ) \text { where } \xi \equiv t-e.r/v_s, \text {the velocity is} \ \dot{u} = -\nabla .\Psi =(e/v_s) f^\prime (\xi ).  . Integrating with respect to time, we obtain the displacement  u=(1/v_s) f(\xi )e.  The acoustic pressure is p_a=-B(\nabla .u) =m_v f^\prime(\xi ) . Using expressions [5.53], we obtain

E_v=E_{(C)v}+E_{(P)v}=½ m_v \dot{u}^2 +½B \sum_{ij} (\partial_iu_j)(\partial_iu_j), \\ S^i=-B\sum\limits_{j} \dot{u}_j (\partial_iu_j), \ \ \ \ \ \ P_v=-m_v\sum\limits_{j} (\nabla u_j)\dot{u}_j                      [sound waves].                       [5.53]

E_{(C)v}=½(m_v/v_s^2)f^ \prime(\xi )^2 \\ E_{(P)v}=½B\sum\limits_{ij} \left[(e_ie_j/v_s^2) f^ \prime (\xi )\right] \left[(e_ie_j/v_s^2)f^ \prime (\xi )\right] =½(m_v/v_s^2) f^ \prime (\xi )^2 \\ E_v=E_{(C)v}+E_{(P)v}=(m_v/v_s^2) f^ \prime (\xi )^2. \\ S_i(r,t)=-B\sum\limits_{j} \left[-(e_j/v_s)f^ \prime (\xi )\right]\left[(e_ie_j/v_s^2)f^ \prime(\xi )\right] =(m_v/v_s)f^ \prime(\xi )^2e_i=E_vv_s \ e_i. \\ P_v^i=-m_v\sum\limits_{j} \left[(-e_i/v_s^2)f^ \prime (\xi ) e_j\right] (e_j/v_s)f^ \prime (\xi )=(m_v/v_s^3)f^ \prime (\xi )^2e_i=(E_v/v_s)e_i .                             [5.74]

b) If the velocity potential is \Psi =(R/r)\Psi _m \cos(ωt-kr) \ \text {where} \ k=ω/v_s , the velocity, displacement and acoustic pressure at large distance are the 1/r terms in [5.42], i.e.

\partial_tu(r,t)=R\Psi _m\left[(1/r^2) \cos(ωt\pm kr)\pm (k/r) \sin(ωt\pm kr)\right] e_r , \\ u(r,t)=(R\Psi _m/ω)\left[(1/r^2) \sin(ωt\pm kr)\mp (k/r) \cos(ωt\pm kr)\right] e_r , \\ P_a(r,t)=(Bk^2R\Psi _m/ωr) \cos(ωt\pm kr+\pi /2),                   [5.42]

\partial_tu(r,t)=-(ωR/v_sr)\Psi _m \sin(ωt-kr)]e_r, \ u=(R/v_sr)\Psi _m \cos(ωt-kr)]e_r \\ P_a(r,t)=(BωR/v_s^2r)\Psi _m \cosωt\pm kr+\pi /2).                                           [5.75]

Using the expressions of [5.53], we obtain the dominant terms

E_{(c)v}=½ m_V(ωR\Psi _m/v_sr)^2 \sin^2(ωt-kr) \\ E_{(P)v}=½m_vv_s^2(r\Psi _m/v_s)^2 \sin^2(ωt-kr)\sum\limits_{ij} (kr^ir^j/r^3)(kr^ir^j/r^3)=E_{(C)V} \\ E_v=E_{(C)v}+E_{(P)V}=m_v(ωr\Psi _m/v_sr)^2 \sin^2(ωt-kr) \\ S_i=-B\sum\limits_{j}(-ωkR^2\Psi _m^2/v_s^2r^3) \sin^2(ωt-kr)\sum\limits_{j}(r^i/r)r^j(r^j/r)=v_sE_ve_r^i \\ P_v^i=m_v\sum\limits_{j} (kωR^2/v_s^2r^2)\Psi _m^2 \sin^2(ωt-kr)](r^j/r)(r^i/r)(r^j/r)=(E_v/v_s)e_r^i                 .[5.76]

The spherical wave, as specified by the velocity potential or the acoustic pressure p_a   , propagates without a change of profile but its amplitude decreases like 1/r. This decrease of the amplitude can be explained by the distribution of the emitted sound energy on a spherical surface of radius r. If P is the mean emitted power, the sound intensity, which is received at a point of this surface, is P/4πr². Thus, it decreases like 1/r² and the wave amplitude decreases like 1/r. Alternatively, if the wave is specified by u or \dot{u} in the equations of [5.42], it is a superposition of a term, which decreases like 1/r and a term, which decreases like 1/r². The wave decreases as it propagates and its profile varies.

Related Answered Questions