Question 14.14: Calculate the equilibrium compositions at 1000 K and 1 bar o...

Calculate the equilibrium compositions at 1000 K and 1 bar of a gas-phase system containing the species \mathrm{CH}_4, \mathrm{H}_2 \mathrm{O}, \mathrm{CO}, \mathrm{CO}_2 \text {, and } \mathrm{H}_2 \text {. } . In the initial unreacted state there are present 2 mol of CH_4  and  3  mol  of  H_2O . Values of \Delta G_{f_l}^{\circ} at 1000 K are:

\Delta G_{f_{\mathrm{CH}_4}}^{\circ}=19,720 \mathrm{~J} \cdot \mathrm{mol}^{-1}      \quad \Delta G_{f_{\mathrm{H}_2 \mathrm{O}}}^{\circ}=-192,420 \mathrm{~J} \cdot \mathrm{mol}^{-1}

\Delta G_{f_{\mathrm{CO}}}^{\circ}=-200,240 \mathrm{~J} \cdot \mathrm{mol}^{-1}        \quad \Delta G_{f_{\mathrm{CO}_2}}^{\circ}=-395,790 \mathrm{~J} \cdot \mathrm{mol}^{-1}

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The required values of A_k are determined from the initial numbers of moles, and the values of a_{ik} come directly from the chemical formulas of the species. These are shown in the following table.

Element k
Carbon Oxygen Hydrogen
 A_k = no. of atomic masses of k in the system
A_C = 2 A_O = 3 A_H = 14
Species i a_{ik} = no. of atoms of k per molecule of i
\mathrm{CH}_4 a_{\mathrm{CH}_4, \mathrm{C}}=1 a_{\mathrm{CH}_4, \mathrm{O}}=0 a_{\mathrm{CH}_4, \mathrm{H}}=4
H_2O a_{\mathrm{H}_2 \mathrm{O}, \mathrm{C}}=0 a_{\mathrm{H}_2 \mathrm{O}, \mathrm{O}}=1 a_{\mathrm{H}_2 \mathrm{O}, \mathrm{H}}=2
CO a_{\mathrm{CO}, \mathrm{C}}=1 a_{\mathrm{CO}, \mathrm{O}}=1  a_{\mathrm{CO}, \mathrm{H}}=0
CO_2 a_{\mathrm{CO}_2, \mathrm{C}}=1 a_{\mathrm{CO}_2, \mathrm{O}}=2 a_{\mathrm{CO}_2, \mathrm{H}} = 0
H_2 a_{\mathrm{H}_2, \mathrm{C}}=0 a_{\mathrm{H}_2, \mathrm{O}}=0 a_{\mathrm{H}_2, \mathrm{H}}=2

At 1 bar and 1000 K the assumption of ideal gases is justified, and each \hat{\phi}_i is unity. Because P = 1 bar, P∕P° = 1, and Eq. (14.43) is written:

\Delta G_{f_i}^{\circ}+R T \ln \left(\frac{y_i \hat{\phi}_i P}{P^{\circ}}\right)+\sum_k \lambda_k a_{i k}=0 \quad(i=1,2, \ldots, N)       (14.43)

\frac{\Delta G_{f_i}^{\circ}}{R T}+\ln \frac{n_i}{\sum_i n_i}+\sum_k \frac{\lambda_k}{R T} a_{i k}=0

The five equations for the five species then become:

\mathrm{CH}_4: \frac{19,720}{R T}+\ln \frac{n_{\mathrm{CH}_4}}{\sum_i n_i}+\frac{\lambda_{\mathrm{C}}}{R T}+\frac{4 \lambda_{\mathrm{H}}}{R T}=0

\mathrm{H}_2 \mathrm{O}: \frac{-192,420}{R T}+\ln \frac{n_{\mathrm{H}_2 \mathrm{O}}}{\sum_i n_i}+\frac{2 \lambda_{\mathrm{H}}}{R T}+\frac{\lambda_{\mathrm{O}}}{R T}=0

\mathrm{CO}: \frac{-200,240}{R T}+\ln \frac{n_{\mathrm{CO}}}{\sum_i n_i}+\frac{\lambda_{\mathrm{C}}}{R T}+\frac{\lambda_{\mathrm{O}}}{R T}=0

\mathrm{CO}_2: \frac{-395,790}{R T}+\ln \frac{n_{\mathrm{CO}_2}}{\sum_i n_i}+\frac{\lambda_{\mathrm{C}}}{R T}+\frac{2 \lambda_{\mathrm{O}}}{R T}=0

\mathrm{H}_2: \quad \ln \frac{n_{\mathrm{H}_2}}{\sum_i n_i}+\frac{2 \lambda_{\mathrm{H}}}{R T}=0

The three atom-balance equations [Eq. (14.41)] and the equation for \sum_i n_i are:

\sum_i n_i a_{i k}=A_k \quad(k=1,2, \ldots, w)       (14.41)

\text { C : } n_{\mathrm{CH}_4}+n_{\mathrm{CO}}+n_{\mathrm{CO}_2}=2

\mathrm{H}: \quad 4 n_{\mathrm{CH}_4}+2 n_{\mathrm{H}_2 \mathrm{O}}+2 n_{\mathrm{H}_2}=14

\text { O : } n_{\mathrm{H}_2 \mathrm{O}}+n_{\mathrm{CO}}+2 n_{\mathrm{CO}_2}=3

\sum_i n_i=n_{\mathrm{CH}_4}+n_{\mathrm{H}_2 \mathrm{O}}+n_{\mathrm{CO}}+n_{\mathrm{CO}_2}+n_{\mathrm{H}_2}

With RT = 8314 J mol^{-1}, simultaneous computer solution of these nine equations ^{10} produces the following results \left(y_i=n_i / \sum_i n_i\right):

y_{\mathrm{CH}_4}=0.0196

y_{\mathrm{H}_2 \mathrm{O}}=0.0980 \quad \frac{\lambda_{\mathrm{C}}}{R T}=0.7635

y_{\mathrm{CO}}=0.1743 \quad \frac{\lambda_{\mathrm{O}}}{R T}=25.068

y_{\mathrm{CO}_2}=0.0371 \quad \frac{\lambda_{\mathrm{H}}}{R T}=0.1994

y_{\mathrm{H}_2}=0.6710

The values of \lambda_k / R T are not physically meaningful, but they are included for completeness.


^{10} Example computer code for this problem is available in the Connect online learning center.

Related Answered Questions

Question: 14.4

Verified Answer:

Hydration of ethylene means reaction of ethylene w...