Question 14.4: Calculate the equilibrium constant for the vapor-phase hydra...

Calculate the equilibrium constant for the vapor-phase hydration of ethylene at 145°C and at 320°C from data given in App. C.

The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Hydration of ethylene means reaction of ethylene with water vapor to produce ethanol vapor. Thus, we first determine values for ΔA, ΔB, ΔC, and ΔD for the reaction:

\mathrm{C}_2 \mathrm{H}_4(\mathrm{~g})+\mathrm{H}_2 \mathrm{O}(g) \rightarrow \mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}(g)

The meaning of Δ is indicated by: \Delta=\left(\mathrm{C}_2 \mathrm{H}_5 \mathrm{OH}\right)-\left(\mathrm{C}_2 \mathrm{H}_4\right)-\left(\mathrm{H}_2 \mathrm{O}\right) the heat-capacity data of Table C.1:

ΔA = 3.518 − 1.424 − 3.470 = −1.376

\Delta B=(20.001-14.394-1.450) \times 10^{-3}=4.157 \times 10^{-3}

\Delta C=(-6.002+4.392-0.000) \times 10^{-6}=-1.610 \times 10^{-6}

\Delta D=(-0.000-0.000-0.121) \times 10^5=-0.121 \times 10^5

Values of \Delta H_{298}^{\circ} \text { and } \Delta G_{298}^{\circ} at 298.15 K for the hydration reaction are found from
the heat-of-formation and Gibbs-energy-of-formation data of Table C.4:

\Delta H_{298}^{\circ}=-235,100-52,510-(-241,818)=-45,792 \mathrm{~J} \cdot \mathrm{mol}^{-1}

\Delta G_{298}^{\circ}=-168,490-68,460-(-228,572)=-8378 \mathrm{~J} \cdot \mathrm{mol}^{-1}

For T = 145 + 273.15 = 418.15 K, values of the integrals in Eq. (14.18) are:

IDCPH(298.15, 418.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5) = −23.121

IDCPS(298.15, 418.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5) = −0.0692

Substitution of values into Eq. (14.18) for a reference temperature of 298.15 gives:

\frac{\Delta G^{\circ}}{R T}=\frac{\Delta G_0^{\circ}-\Delta H_0^{\circ}}{R T_0}+\frac{\Delta H_0^{\circ}}{R T}+\frac{1}{T} \int_{T_0}^T \frac{\Delta C_P^{\circ}}{R} d T-\int_{T_0}^T \frac{\Delta C_P^{\circ}}{R} \frac{d T}{T}     (14.18)

\frac{\Delta G_{418}^{\circ}}{R T}=\frac{-8378+45,792}{(8.314)(298.15)}+\frac{-45,792}{(8.314)(418.15)}+\frac{-23.121}{418.15}+0.0692=1.9356

For T = 320 + 273.15 = 593.15 K,

IDCPH ( 298.15, 593.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5 )  = 22.632

IDCPS(298.15, 593.15; −1.376, 4.157E-3, −1.610E-6, −0.121E+5) = 0.0173

Thus, at 593.15 K:

\frac{\Delta G_{593}^{\circ}}{R T}=\frac{-8378+45,792}{(8.314)(298.15)}+\frac{-45,792}{(8.314)(593.15)}+\frac{22.632}{593.15}-0.0173=5.8286

Finally,

@ 418.15 K : ln K = −1.9356       and          K = 1.443 × ​10^ −1
@ 593.15 K : ln K = −5.8286      and        K = 2.942 × ​10^ −3

Application of Eqs. (14.21), (14.22), and (14.24) provides an alternative solution to this example. By Eq. (14.21),

K_0=\exp \frac{8378}{(8.314)(298.15)}=29.366

Moreover,      \frac{\Delta H_0^{\circ}}{R T_0}=\frac{-45,792}{(8.314)(298.15)}=-18.473

With these values, the following results are readily obtained:

K_0 K_1 K_2 K
298.15 29.366 1 1 29.366
418.15 29.366 4.985 × 10−3 0.9860 1.443 × 10−1
593.15 29.366 1.023 × 10−4 0.9794 2.942 × 10−3

Clearly, the influence of K_1 is far greater than that of K_2. This is a typical result and is consistent with the observation that all of the lines on Fig. 14.2 are very nearly linear.

التقاط

Related Answered Questions