Question 16.21: Calculate the pH of a 0.10-M solution of ammonium chloride (...

Calculate the \text{pH} of a 0.10-M solution of ammonium chloride (\text{NH}_4\text{Cl}) at 25°\text{C}.

Strategy A solution of \text{NH}_4\text{Cl} contains \text{NH}_4^+ cations and \text{Cl}^– anions. The \text{NH}_4^+ ion is the conjugate acid of the weak base \text{NH}_3. Use the K_b value for \text{NH}_3 (1.8 × 10^{–5} from Table 16.8) and Equation 16.8 to determine K_a for \text{NH}_4^+.

K_a = \frac{K_w}{K_b} = \frac{1.0 × 10^{–14}}{1.8 × 10^{–5}} = 5.6 × 10^{–10}

Setup Again, we write the balanced chemical equation and the equilibrium expression:

\text{NH}_4^+(aq) + \text{H}_2\text{O}(l) \rightleftarrows \text{NH}_3(aq) + \text{H}_3\text{O}^+(aq)              K_a = \frac{[\text{NH}_3][\text{H}_3\text{O}^+]}{[\text{NH}_4^+]}

Next, construct a table to determine the equilibrium concentrations of the species in the equilibrium expression:

                                                   \text{NH}_4^+(aq) + \text{H}_2\text{O}(l) \rightleftarrows \text{NH}_3(aq) + \text{H}_3\text{O}^+(aq)

Initial  concentration  (M): 0.10 0 0
Change  in  concentration  (M): –x +x +x
Equilibrium  concentration  (M): 0.10 − x x x

Equation 16.8            K_a × K_b = K_w

TA B L E   1 6 . 8   Ionization Constants of Some Weak Acids at 25°C
Name of acid Formula Structure K_b
\text{Ethylamine} \text{C}_2\text{H}_5\text{NH}_2 5.6 × 10^{–4}
\text{Methylamine} \text{CH}_3\text{NH}_2 4.4 × 10^{–4}
\text{Ammonia} \text{NH}_3 1.8 × 10^{–5}
\text{Pyridine} \text{C}_5\text{H}_5\text{N} 1.7 × 10^{–9}
\text{Aniline} \text{C}_6\text{H}_5\text{NH}_2 3.8 × 10^{–10}
\text{Urea} \text{H}_2\text{NCONH}_2 1.5 × 10^{–14}
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

Substituting the equilibrium concentrations into the equilibrium expression and using the shortcut to solve for x, we get

5.6 × 10^{–10} = \frac{x^2}{0.10 − x} ≈ \frac{x^2}{0.10}

x = \sqrt{(5.6 × 10^{–10})(0.10)} = 7.5 × 10^{–6}  M

According to the equilibrium table, x = [\text{H}_3\text{O}^+]. The \text{pH} can be calculated as follows:

\text{pH} = –\text{log} (7.5 × 10^{–6}) = 5.12

The \text{pH} of a 0.10-M solution of ammonium chloride (at 25°\text{C}) is 5.12.

Related Answered Questions

Question: 16.20

Verified Answer:

Substituting the equilibrium concentrations into t...
Question: 16.14

Verified Answer:

(a)                          \text{CH}_3\te...
Question: 16.16

Verified Answer:

The equilibrium concentrations are substituted int...
Question: 16.13

Verified Answer:

These equilibrium concentrations are then substitu...