Question p.21.3: Calculate the shear flow distribution and the stringer and f...

Calculate the shear flow distribution and the stringer and flange loads in the beam shown in Fig. P.21.3 at a section 1.5 m from the built-in end. Assume that the skin and web panels are effective in resisting shear stress only; the beam tapers symmetrically in a vertical direction about its longitudinal axis.

Screenshot 2022-10-09 113641
The blue check mark means that this solution has been answered and checked by an expert. This guarantees that the final answer is accurate.
Learn more on how we answer questions.

The beam section at a distance of 1.5 m from the built-in end is shown in Fig. S.21.3.
The bending moment, M, at this section is given by
M = −40 × 1.5 = −60 kN m

Since the x axis is an axis of symmetry I_{xy} = 0; also M_y = 0. The direct stress distribution is then, from Eq. (16.18)

\sigma_z=\left(\frac{M_y I_{x x}-M_x I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right) x+\left(\frac{M_x I_{y y}-M_y I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right) y  (16.18)

\sigma_z=\frac{M_x}{I_{x x}} y  (i)

in which I_{x x}=2 \times 1000 \times 112.5^2+4 \times 500 \times 112.5^2=50.63 \times 10^6 \mathrm{~mm}^4. Then, from Eq. (i), the direct stresses in the flanges and stringers are

\sigma_z=\pm \frac{60 \times 10^6 \times 112.5}{50.63 \times 10^6}=\pm 133.3 \mathrm{~N} / \mathrm{mm}^2

Therefore

P_{z, 1}=-P_{z, 2}=-133.3 \times 1000=-133300 \mathrm{~N}

and
P_{z, 3}=P_{z, 5}=-P_{z, 4}=-P_{z, 6}=-133.3 \times 500=-66650 \mathrm{~N}
From Eq. (21.9)

P_{y, r}=P_{z, r} \frac{\delta y_r}{\delta z}  (21.9)

P_{y, 1}=P_{y, 2}=133300 \times \frac{75}{3 \times 10^3}=3332.5 \mathrm{~N}

and

P_{y, 3}=P_{y, 4}=P_{y, 5}=P_{y, 6}=66650 \times \frac{75}{3 \times 10^3}=1666.3 \mathrm{~N}

Thus the total vertical load in the flanges and stringers is
2 × 3332.5 + 4 × 1666.3 = 13 330.2 N
Hence the total shear force carried by the panels is
40 × 10³ − 13 330.2 = 26 669.8 N

The shear flow distribution is given by Eq. (20.11) which, since I_{x y}=0, S_x=0 and t_D = 0 reduces to

\begin{aligned}q_s=&-\left(\frac{S_x I_{x x}-S_y I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right)\left(\int_0^s t_{\mathrm{D}} x \mathrm{~d} s+\sum_{r=1}^n B_r x_r\right) \\&-\left(\frac{S_y I_{y y}-S_x I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right)\left(\int_0^s t_{\mathrm{D} y} \mathrm{~d} s+\sum_{r=1}^n B_r y_r\right)+q_{s, 0}\end{aligned}  (20.11)

q_s=-\frac{S_y}{I_{x x}} \sum_{r=1}^n B_r y_r+q_{s, 0}

i.e.

q_s=-\frac{26669.8}{50.63 \times 10^6} \sum_{r=1}^n B_r y_r+q_{s, 0}

or

q_s=-5.27 \times 10^{-4} \sum_{r=1}^n B_r y_r+q_{s, 0}  (ii)

From Eq. (ii)

\begin{aligned}&q_{\mathrm{b}, 13}=0 \\&q_{\mathrm{b}, 35}=-5.27 \times 10^{-4} \times 500 \times 112.5=-29.6 \mathrm{~N} / \mathrm{mm} \\&q_{\mathrm{b}, 56}=-29.6-5.27 \times 10^{-4} \times 500 \times 112.5=-59.2 \mathrm{~N} / \mathrm{mm} \\&q_{\mathrm{b}, 12}=-5.27 \times 10^{-4} \times 1000 \times 112.5=-59.3 \mathrm{~N} / \mathrm{mm}\end{aligned}

The remaining distribution follows from symmetry. Now taking moments about the point 2 (see Eq. (17.17))

S_x \eta_0-S_y \xi_0=\oint p q_{\mathrm{b}} \mathrm{d} s+2 A q_{s, 0}  (17.17)

26 669.8 × 100 = 59.2 × 225 × 500 + 29.6 × 250 × 225 + 2 × 500 × 225_{q_{s,0}}

from which
q_{s,0} = −36.9 N/mm (i.e. clockwise)
Then

\begin{aligned}&q_{13}=36.9 \mathrm{~N} / \mathrm{mm}=q_{42} \\&q_{35}=36.9-29.6=7.3 \mathrm{~N} / \mathrm{mm}=q_{64} \\&q_{65}=59.2-36.9=22.3 \mathrm{~N} / \mathrm{mm} \\&q_{21}=36.9+59.3=96.2 \mathrm{~N} / \mathrm{mm}\end{aligned}

Finally

\begin{aligned}P_1 &=-\sqrt{P_{z, 1}^2+P_{y, 1}^2}=-\left(\sqrt{133300^2+3332.5^2}\right) \times 10^{-3}=-133.3 \mathrm{kN}=-P_2 \\P_3 &=-\sqrt{P_{z, 3}^2+P_{y, 3}^2}=-\left(\sqrt{66650^2+1666.3^2}\right) \times 10^{-3} \\&=-66.7 \mathrm{kN}=P_5=-P_4=-P_6\end{aligned}
Screenshot 2022-10-09 115211

Related Answered Questions

Question: 21.3

Verified Answer:

In this example the stringer areas do not vary alo...