Question p.21.3: Calculate the shear flow distribution and the stringer and f...
Calculate the shear flow distribution and the stringer and flange loads in the beam shown in Fig. P.21.3 at a section 1.5 m from the built-in end. Assume that the skin and web panels are effective in resisting shear stress only; the beam tapers symmetrically in a vertical direction about its longitudinal axis.

Learn more on how we answer questions.
The beam section at a distance of 1.5 m from the built-in end is shown in Fig. S.21.3.
The bending moment, M, at this section is given by
M = −40 × 1.5 = −60 kN m
Since the x axis is an axis of symmetry I_{xy} = 0; also M_y = 0. The direct stress distribution is then, from Eq. (16.18)
\sigma_z=\left(\frac{M_y I_{x x}-M_x I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right) x+\left(\frac{M_x I_{y y}-M_y I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right) y (16.18)
\sigma_z=\frac{M_x}{I_{x x}} y (i)
in which I_{x x}=2 \times 1000 \times 112.5^2+4 \times 500 \times 112.5^2=50.63 \times 10^6 \mathrm{~mm}^4. Then, from Eq. (i), the direct stresses in the flanges and stringers are
\sigma_z=\pm \frac{60 \times 10^6 \times 112.5}{50.63 \times 10^6}=\pm 133.3 \mathrm{~N} / \mathrm{mm}^2Therefore
P_{z, 1}=-P_{z, 2}=-133.3 \times 1000=-133300 \mathrm{~N}and
P_{z, 3}=P_{z, 5}=-P_{z, 4}=-P_{z, 6}=-133.3 \times 500=-66650 \mathrm{~N}
From Eq. (21.9)
P_{y, r}=P_{z, r} \frac{\delta y_r}{\delta z} (21.9)
P_{y, 1}=P_{y, 2}=133300 \times \frac{75}{3 \times 10^3}=3332.5 \mathrm{~N}and
P_{y, 3}=P_{y, 4}=P_{y, 5}=P_{y, 6}=66650 \times \frac{75}{3 \times 10^3}=1666.3 \mathrm{~N}Thus the total vertical load in the flanges and stringers is
2 × 3332.5 + 4 × 1666.3 = 13 330.2 N
Hence the total shear force carried by the panels is
40 × 10³ − 13 330.2 = 26 669.8 N
The shear flow distribution is given by Eq. (20.11) which, since I_{x y}=0, S_x=0 and t_D = 0 reduces to
\begin{aligned}q_s=&-\left(\frac{S_x I_{x x}-S_y I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right)\left(\int_0^s t_{\mathrm{D}} x \mathrm{~d} s+\sum_{r=1}^n B_r x_r\right) \\&-\left(\frac{S_y I_{y y}-S_x I_{x y}}{I_{x x} I_{y y}-I_{x y}^2}\right)\left(\int_0^s t_{\mathrm{D} y} \mathrm{~d} s+\sum_{r=1}^n B_r y_r\right)+q_{s, 0}\end{aligned} (20.11)
q_s=-\frac{S_y}{I_{x x}} \sum_{r=1}^n B_r y_r+q_{s, 0}i.e.
q_s=-\frac{26669.8}{50.63 \times 10^6} \sum_{r=1}^n B_r y_r+q_{s, 0}or
q_s=-5.27 \times 10^{-4} \sum_{r=1}^n B_r y_r+q_{s, 0} (ii)
From Eq. (ii)
\begin{aligned}&q_{\mathrm{b}, 13}=0 \\&q_{\mathrm{b}, 35}=-5.27 \times 10^{-4} \times 500 \times 112.5=-29.6 \mathrm{~N} / \mathrm{mm} \\&q_{\mathrm{b}, 56}=-29.6-5.27 \times 10^{-4} \times 500 \times 112.5=-59.2 \mathrm{~N} / \mathrm{mm} \\&q_{\mathrm{b}, 12}=-5.27 \times 10^{-4} \times 1000 \times 112.5=-59.3 \mathrm{~N} / \mathrm{mm}\end{aligned}The remaining distribution follows from symmetry. Now taking moments about the point 2 (see Eq. (17.17))
S_x \eta_0-S_y \xi_0=\oint p q_{\mathrm{b}} \mathrm{d} s+2 A q_{s, 0} (17.17)
26 669.8 × 100 = 59.2 × 225 × 500 + 29.6 × 250 × 225 + 2 × 500 × 225_{q_{s,0}}
from which
q_{s,0} = −36.9 N/mm (i.e. clockwise)
Then
Finally
\begin{aligned}P_1 &=-\sqrt{P_{z, 1}^2+P_{y, 1}^2}=-\left(\sqrt{133300^2+3332.5^2}\right) \times 10^{-3}=-133.3 \mathrm{kN}=-P_2 \\P_3 &=-\sqrt{P_{z, 3}^2+P_{y, 3}^2}=-\left(\sqrt{66650^2+1666.3^2}\right) \times 10^{-3} \\&=-66.7 \mathrm{kN}=P_5=-P_4=-P_6\end{aligned}